1549901369-Elements_of_Real_Analysis__Denlinger_

(jair2018) #1
9.2 Uniform Convergence 555

llgkll = fc ---+ 0, so gk ---+ 0 uniformly on [o, ?T - o]. Therefore, by Dirichlet's

-^00 sinkx
test for umform convergence, I: -k-converges uniformly on [o, ?T - o].
k=l


(^00) sin kx
(b) The series I: - k- converges pointwise everywhere, as we showed in
k=l
Example 8.5.7. To investigate uniform convergence we use the uniform Cauchy


. n sinkx
criterion. Consider the partial sums Sn= I: -k-. Let m EN. Note that for
k=l
m:::; k:::; 2m, ~:::; 2 ";,,:::; 1, so sin 2 ";,, ~sin~. Now, let x = 2 !n. Then,
2m. k 2m. k 2m. 1. 1 2m. 1
L
---sm x L sin --^2 m > L -----sm^2 sm^2 L 1---_ sm^2.
k k - 2m 2m 2
k=m k=m k=m k = m


sin l^00 sin kx
Therefore, llS2m - Smll ~ --^2. So, by the uniform Cauchy criterion, I: -k-
2 k=l
cannot converge uniformly on [O, ?r]. 0


EXERCISE SET 9.2


  1. Prove Theorem 9.2.2.

  2. Prove that if Ji, f2, · · · , fn E B(S), t hen Ji+ f2 + · · · + fn E B(S), and
    llJi + f2 + · · · + fnll:::; llJill + llf211 + · · · + llfnll·

  3. Write out the c:-no definition of the statement that f n ---+ f pointwise on a
    set S. Explain how this differs from the definition of uniform convergence
    off n to f on S given in Definition 9.2.3.

  4. Which of the following are equivalent? Explain the relevance to Definition
    9.2.3.
    (a) Ve:> 0, :3 no EN 3 Vn ~no, x E S =? lfn(x) - f(x)I < c:.
    (b) Ve:> 0, :3 no EN 3 Vn ~no and Vx E S , lfn(x) - f(x)I < c:.
    (c) Ve:> 0, :3 no EN 3 Vx E Sand Vn ~no, lfn(x) - f(x)I < c:.
    (d) Ve:> 0, :3 no EN 3 Vx E S , n ~no=? lfn(x) - f(x)I < c:.

  5. For each of the sequences in Examples 9.1.7 (b) and (d), calculate llfn - !II
    and use it to show that {f n} does not converge uniformly to f.

  6. Prove Theorem 9.2.5.

  7. Prove that {sin (x + ~)} converges uniformly to sinx on JR. [Hint: use
    the mean value theorem.]

Free download pdf