9.3 Implications of Uniform Convergence in Calculus 561
Theorem 9.3.8 (Uniform Convergence Preserves Integrals) If fn--> f
uniformly on a closed interval [a, b], and if each f n is integrable on [a, b], then
f is integrable on [a, b] and t a f = n--+oo lim t a fn·
Proof. Suppose fn --> f uniformly on [a, b], and each fn is integrable on
[a, b]. Note that 't:/x E [a, b], lfn(x) - f(x)I ~ llfn -!II , so
fn(x) - llfn - fll ::; f(x)::; fn(x) + llfn -!II.
Then l: Un - II! n - !II) = l: Un - II! n - f II) ~ l: f ::; l: f
~ l: Un+ llfn -!II)= l: Un+ llfn - !II). (3)
So, 0 ~ l: f - l: f ::; l: Un+ II! n - f II) - l: Un - II! n - !II)
0 ~ l: f - l: f ~ 2 l: llfn -!II = 2 llfn - !II (b - a).
Since f n --> f uniformly on [a, b], II! n - !II --> 0. So, when we take the limit
as n --> oo, we have
which means that f is integrable on [a, b].
From inequality (3) we have
(I: fn) - llfn - fll (b - a)~ l: f ~ (f: fn) + llfn -Jll (b - a)
- II! n - !II (b - a) ::; l: f - l: f n ::; II! n - f II (b - a)
11 : f - l: fnl ~ llfn - fll (b - a)--> 0.
Therefore, by the second squeeze principle (2.3.2), n--+oo lim t a fn = t a f. •
Corollary 9.3.9 If a series 2: fk of integrable functions converges uniformly
to f on [a, b], then f is integrable on [a, b], and l: f = L l: fk.
That is, if 2: fk converges uniformly, then l: L fk = L l: fk.
1
rr sinnx
Example 9.3.10 Evaluate lim --dx, where 0 < a < 1r.
n->oo a nx