9.3 Implications of Uniform Convergence in Calculus 563
Then,
lfn(x) - fm(x)I :=::; lfn(xo) - fm(xo)I +Ix -xol lf~(t) -f,',,(t)I
E E
< 2 + (b - a) 2(b - a) = c:.
Thus, m,n;::: max{n1, n2} => llfn -fmll < c:. Therefore, Un} converges uni-
formly on [a , b]. Define
f = lim fn· (5)
n-+oo
Part 2: Remarks on Part l.
(1) Xo may be any point of [a, b] for which {fn(xo)} converges. Since fn---+ f
uniformly on [a, b], Equation ( 4) holds for all x 0 E [a, b].
(2) Each f n is differentiable on [a, b], so it is continuous there. Thus, by
Corollary 9.3.6 , f is continuous on [a, b].
Part 3: Let xo E [a, b]. Define functions 9n and g on [a, b] by
{
fn(x) - fn(xo) if x I-Xo}
9n(x) = x -Xo and
f~(xo) if x = xo
{
f(x) - f(xo) if x I-xo}
g(x)= x-xo.
f'(xo) if x = xo
Since each f is differentiable at xo,
lim 9n(x) = f~(xo) = 9n(xo).
x---+xo
Thus, each 9n is continuous at Xo. Also, Vx E [a, b],
{
[fn(x) - fn(xo)] - [fm(x) - fm(xo)]
x - xo
9n(x) -9m(x) =
f~(xo) - f'(xo)
= { [fn(x) - fm(x)~ -=-[~:(xo) -fm(xo)]
f~(xo) - f'(xo)
if X f. Xo}
if X = Xo
if X -=fa. Xo}.
if X = Xo
(6)
Let c: > 0. Since {!~} converges uniformly on [a, b], :3 n3 E N 3 m, n 2:
n3 => II!~ -f.'nll < c:.