594 Appendix A • Logic and Proofs
Table A.10
p Q R QVR p /\ p /\ Q p /\ R (P /\ Q) V
(Q V R) (P /\ R)
T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F
t t
Observe that the fifth and eighth columns of this table are identical. That
is, the propositions Pl\ (Qv R) and (Pl\ Q) V (P/\ R) are logically equivalent.
D
EXERCISE SET A.1-B
In Exercises 1-10 use a truth-table to determine whether the given com-
pound proposition is a tautology.
- P V rv P 6. (P V Q) ==? P
- P=?P 7. (Pv Q)=?(Pv R)
- P ==? (P V Q) 8. P ==? (Q ==? P)
- (P /\ Q) ==? Q 9. (P ==? Q) ==? P
- rv (P /\ rv P) 10. [(P ==? Q) /\ rv QJ ==? rv P
In Exercises 11-20 verify the given equivalence using a truth-table. - rv (P v Q) = (rv P /\ rv Q)
- P ==? Q = rv (P /\ rv Q)
- p v Q = f"V Q ==? p
- p v Q = f"V p ==? Q
- rv (P /\ Q) = Q ==? rv P
- P ==? (Q ==? R) = (P /\ Q) ==? R
17.P{::}Q = (P=?Q) /\ (Q=?P) - rv (P {::} Q) = (P /\ rv Q) v ( Q /\ rv P)
- rv (P {::} Q) = (P {::} rv Q)
- PV (QI\ R) := (PV Q) /\ (PV R)