B.3 Algebra of Real-Valued Functions 627
(g) Minimum: V f, g E F(S, JR), we define the function min{!, g}
by specifying that Vx E S ,
min{f,g}(x) = min{f(x),g(x)}.
"--v--'
in F(S,JR) in JR
Example B.3.2 Consider the functions f,g E F(JR,JR) given by f(x) = 3x+2
1
and g(x) =--.Then Vx E JR,
x-1
1
(a) (! + g)(x) = f(x) + g(x) = 3x + 2 + --.
x-1
(b) 2f(x) = 2(3x + 2) = 6x + 4.
(c) (fg)(x) = f(x)g(x) = (3x + 2) ( - 1 ) = --. 3x +^2
x-1 x-1
(d) lfl(x) = lf(x)I = l3x + 21.
(e) max{f,g}(x) = max{3x+2,-
1
-}; for example, max{f,g}(O) = 2
x-1
1
and max{f,g}(-1) = -
3
.
(f) min{f, g}(x) =min { 3x + 2, x ~
1
} ; for example, min{f,g}(O) = -~
and min{f,g}(-1) = -1. D
Theorem B.3.3 (Algebra of Functions) Let S denote an arbitrary nonempty
set. Then F(S, JR), together with the operations (a)-(c) specified in Definition
B .3.1 above, satisfies the following properties:
(1) Vf,g E F(S, JR), f + g E F(S, JR);
(2) Vf,g,hEF(S,JR),f+(g+h)=(f+g)+h;
(3) Vf,gEF(S, JR), f+g=g+f;
(4) 30EF(S,JR)3VfEF(S,JR),f+0=0+f=f;
(5) VJ E F(S, JR), 3 -f E F(S, JR) 3 f + (-!) = O;
(6) VJ E F(S, JR), V r E JR, rf E F(S, JR);
(7) Vf,g E F(S, JR), V r E JR, r(f + g) = rf +rg;
(8) VJ E F(S, JR), V r , s E JR, (r + s) (!) = rf +sf;
(9) VJ E F(S, JR), V r,s E JR, r(sf) = (rs)f = s(rf);
(10) VJ E F(S, JR), lf = f;