1549901369-Elements_of_Real_Analysis__Denlinger_

(jair2018) #1
66 Chapter 2 • Sequences

lfiJVM Theorem 2.2.13 (Algebra of Limits) Suppose {xn} and {yn} are conver-
,,, ,,, gent sequences and c E R
Then
(a) n-+oo lim (cxn) = c · n-+oo lim Xni


(b) n-+oo lim (xn + Yn) = n-+oo lim Xn+ n-+oo lim Yni


(c) n-+oo lim (xn - Yn) = n-+oo lim Xn- n-+oo lim Yni

(d) n-+oo lim (XnYn) = n-+oo lim Xn· n-+oo lim Yni

(e) lim (2-) = -


1


  • n->oo Yn lim Yn
    n->oo


(if lim Yn =!= 0);
n->oo

(f) l" ( Xn) J!_.~ Xn
n.:.,~ Yn = lim Yn
n->oo

(if lim Yn=t'=O);
n->oo

(g) lim (y!Xn") =. f lim Xn (if lim Xn 2: 0, and 3 n1 3 n 2: n1 =? Xn 2: 0).
n-+oo V n-+oo n-+oo
fi~ o::J.~
Proof. Suppose { Xn} and {yn} are convergent sequences, and c E R In
fact, suppose Xn---+ L and Yn---+ M. Then

(a) Case 1 (c =!= 0) : Let c; > 0. Since Xn ---+ L , 3no E N 3 n 2: n 0 =?

lxn - LI< i;;r·

Then, n 2: no


=? lcxn - cLI = lei lxn - LI < lei · i;;f

=? lcxn - cLI < c:.
Therefore, cxn ---+ cL.

Case 2 (c = 0): Exercise 9.

(b) Let c; > 0.
Since Xn---+ L , 3n1 EN 3 n 2: n1 =? lxn - LI<;.

Since Yn---+ M, 3n 2 EN 3 n 2: n2 =? IYn - Ml < ;.

Free download pdf