68 Chapter 2 11 Sequences
=} JXnYn - LMJ < €.
Therefore, lim (XnYn) = LM = lim Xn· lim Yn·
n-?OO n-+oo n-+oo
(e) Let € > 0. Since Yn --. M -:/=-0, {yn} is bounded away from 0. In fact,
JM[.
by Theorem 2.2.12, 3n1 E N 3 n :'.'.'. n1 =} IYnl > -
2
-. Also, smce Yn --. M,
c[MJ^2.
3n2 EN 3 n :'.'.'. n2 =} IYn - MJ < -
2
-. Let no= max{n1,n2}. Then,
=} IYnl > [~J and IYn - M[ < c[~[
2
1 2 cJM[^2
=} IYn[ < [MJ and IYn - MJ < -2-
[Yn - M[ 1 [Yn - M[ 2 cJMf 2
=} [Yn[[M[ = 1YJ [M[ < [M[. 2[M[
1
1 1 I IM -Yn I IYn - M[
=} Yn - M = YnM = IYn[[M[ < €
=}12__2_1<€.
Yn M
Therefore lim ( 2_) = 2_ =
1
'n->oo Yn M lim Yn.
n->oo
(f) Exercise 14.
(g) Suppose lim Xn = L :'.'.'. 0, and 3 n 1 E N 3 n :'.'.'. n 1 =} Xn :'.'.'. 0. Let € > 0.
n->oo
Case 1 (L = 0): Then 3n2 E N 3 n :'.'.'. n2 =} [xn - Of < c^2. Choose
no= max{n 1 ,n2}. Then
n :'.'.'. no =} 0 :::; Xn < c^2
=} ..;x;;. < €
=} 1..;x;;. - 01 < €.
Therefore, lim n->oo ..;x;;_ = 0 = .JI,.