92 Ordinary Differential Equations
Table 2.5 Approximation to the solution of the IVP
(7) y' = y + x; y(O) = 1 on [O, l] with stepsize h = .1Taylor Improved Fourth
series Euler's Euler 's order Exact
Xn order 3 method method Runge-Kutta solution.o 1.0 1.0 1.0 1.0 1.0
.1 1.11034 1.1 1.11 1.11034 1.11034
.2 1.24279 1.22 1.2 4205 1.24280 1.24281
.3 1.39969 1.362 1.39846 1.39971 1.39972
.4 1.58361 1.5282 1.58180 1.58364 1.58365.5 1.79739 1.72102 l. 79489 1.79744 1.79744
.6 2.04417 1.94312 2.04085 2.0 4423 2.04^424
.7 2 .3 2742 2.19743 2.3 2314 2.32750 2.32 751
.8 2.65098 2.48718 2.6455 7 2.65107 2.65 108
.9 3.01908 2.81590 3.01236 3. 01919 3.01921
1.0 3.^43641 3.18748 3. 48215 3.43655 3.43656Table 2.6 Approximations of the IVP (7) y' = y + x; y(O) = ,1
Euler Improved Euler Runge-Kutta Exact
Xn h = .025 h =. 05 h = .1 solution.o 1.0 1.0 1.0 1.0
.l 1.10762 1.11025 1.1103 4 1.11034
.2 1.23680 1.24261 1.2 4280 1.24281
.3 1.38977 1.39939 1.39971 1.39972.4 1.56900 1.5 (^8317) 1. 58364 1.58365
.5 1.77722 1.7967 8 1.79744 1.79744
.6 2.01743 2.04335 2.044 23 2.04424
.7 2 .29297 2.3 2637 2.3 2750 2.32751
.8 2.60749 2.64964 2.65107 2.65108
.9 2.96504 3.017 42 3.01919 3.019 21
1.0 3.37009 3.43437 3.43655 3.43656