256 Ordinary Differential Equations
11. y" -y' - 2y = O; y(O) = 0, y'(O) = 3 (HINT: See exercise 2.)
11 1
- y" - y' - 2y = x^2 ; y(O) = 4' y'(O) = 2
- y" - 2y' + y = 2 sinx; y(O) = -2, y' (0) = 0
- y"' - y" + 4y' - 4y = O; y(O) = 0, y' (0) = 5 y" (0) = 5
(HINT: See exercise 5.) - Show that for any continuous function f(x) and any constant a =I-0,
the solution of the initial value problem
y" + a^2 y = f(x); y(O) = 0, y'(O) = 0
is
y(x) = {~sin ax}* f(x) =~lax sina(x - ~)!(~) d~
= ~ { sin ax lax f(O cos a~ d~ -cos ax lax f(~) sin a~ d~}.
16. Show that for any continuous function f(x) and any constant a =f. 0,
the solution of the initial value problem
y" - a^2 y = j(x); y(O) = 0, y'(O) = 0
is
y(x) = { 2~ eax} * f(x) - { 21a e-ax} * j(x)
17. Show t hat for a ny continuous function j(x) and any constant a =f. 0,
the solution of the initial value problem
y" - 2ay' + a^2 y = f(x ); y(O) = 0, y' (0) = 0
is
y(x) = {xeax} * f(x) =lax (x - ~)ea(x-0 f(~) d~