562 Ordinary Differential Equations
Exercises 9.2 Pendulum Systems
7. a. Let u1 = Y1, u2 = y~, u3 = y2, and U4 = Y2· Then
0 1 0 0
u' 1 U1
( g m2 ) 0 m2 0
u' 2 - £1 + m1£1 m1£1 U2
u~^0 0 0 1 U3
u' 4 g m2 ( g m2 ) U4
-+-- (^0) - £2 + m1£2 0
£2 m1£2
- b. u = c1[(cos,8x)v1 - (sin,8x)v2] + c2[(sin,8x)v 1 + (cos,8x)v2]
- C3 [ (cos /X )v3 - (sin /X )v 4] + c4[(sin /X )v3 + (cos /X )v 4]
where ,8 = 4.42568, / = 6.26525 and
V1 = (~m) ' V 2 =
.0000000
(
.000000)
- .176 837
.000000 ' - .353 193
(
-.000152981)
0.000000
v^3 = 0.2253 42 ' and
0.000000
(
0.00000 )
- -0.00095846 3
V^4 - 0.00000
1.41182
Exercises 9.4 Mixture Problems
a. q c -- cie - .0633975t (..590690 806898) + c (^2) e -.236603t (-.9 77416 .357759)
b. q = q c + G~~)
9. c. q = -221.49499e-·^0633975 t (:~~)
+^31 ·^542932 e -.236603t (-.35.9 77416 7759) + (200) 100