Topology of Plane Sets of Points 89
EXERCISES 2.2
Describe graphically the sets of points in the complex plane defined by
the following equalities or inequalities.
1. Re z ~ 0 2. Im z < 0
3. lzl = 2 4. lz - 1 I < 1
- z = 3 + (1 + i)t, t E ~ 6. z = (1 - t)i + t, 0 $ t $ 1
- (z - i)(z + i) = 4 8. z + 1 = 3eit, 0 St S 271"
7r (z -2) - Argz = "4 10. Im --i-> 0
-71" 7r k - 2 < Argz < "4 12. 0 < Argz < "4
- {z: lzl > 1, IArgzl Si} 14. Re(~)= 2
15. lz + ll = lz - 21 16. a< Rez < b, a, b real
- 2Slz-ilS3 18. lz-llSlz+ll
19. lz -11S2lz + ll 20. lzl - Rez S^1 / 2
21. Im (z ~ l) = 0 22. lz^2 - ll = 1
- Arg( z - z 0 ) = a, a const. 24. Im z^2 = 1
25. lz - 1 I + lz + 1 I = 4 26. Im ( ~) > ~
- Apply condition (2.4-10) to show that the straight line defined by the
equation Az + Az + C = 0, O, A #-0, C real, is perpendicular to the
vector A. Hint: Note that if z 1 and z 2 (z1 #-z2) are two points on the
lil\e, the vector z 2 - z 1 is in the direction of the line.
- Show that the equation of the straight line through the points z 1 and
z2 (z1 #-z2) can be written as
z=z 1 +t(z 2 -z 1 ), tE~
or alternatively, as
29. If z 0 #-0, show that Re(z/zo) = 1 represents a straight line, z 0 being
the foot of the perpendicular from the origin to the line.
- Prove that the equation of the straight line through the points z 1 and
Zz (z1 #-z2) can be put in the form
1 1 1
Z Z1 Zz = 0.
z z1 .Z2