196 Chapter4
so that I: lanl converges if f3 > 1 and diverges if f3 < 1. For the case (3 = 1,
we have, using (f),
lim lnn [n (-
1
lanl I -1)-1] = lim (lnn)O(ni--y) = 0
n->oo an+i n->oo
which shows that I: Ian I also diverges in this case.
(h) Gauss test. If
~ _ nP + ainp-i + · · · + ap
an+i nP + f3inp-i + · · · + (3p
where p and the coefficients aj, /3j (j = 1, ... ,p) are independent of n, then
I: lanl converges if Re(ai - /3i) > 1, and diverges if Re(ai - /3i)::::; 1.
Proof Letting ai = Ai+ iA 2 , /3i = Bi+ iB2, we have
--an = 1 + ( ai - /3i ) - +^1 0( n -2)
an+i n
=l+ Ai-Bi +iA2-B2 +O(n-2)
n n
Hence
Ai - Bi ·
=l+ +O(n-^2 )
n
assuming n large enough so that 1 +(Ai - Bi)/n > 0. The conclusion
now follows from test (g).
Note Throughout the preceding computation the symbol O(n-^2 ) does
not always stand for the same function of n.
Example Consider the series
1
ab a(a + 1)
+ l!c + 2!c(c+l) +···
+ a(a+l)···(a+n-l)b(b+l)···(b+n-1) +···
n!c( c + 1) · · · ( c + n - 1) ·
where the complex constants a, b, c are neither zero nor negative integers.
Here we have
an =~-~-~ ( n + 1 )( c + n)
an+l (a+ n)(b + n)
n^2 + ( c + 1 )n + c