282 Chapter^5
lead to the impossibility 2 = 0.
To find the images of the horizontal segments z = x + im, -%7r < x <
(^1) /
2 7r, let ·tanhm =a, tanx = t, w = tanz = u +iv. '.1'hen from (5.19-14)
we get
(1 - a^2 )t
u = 1 + a2t2 '
which are the parametric equations of a circle with the point u = 0, v = 1/ a
missing. This point is approached as x --+^1 / 2 7r or t --+ oo (Fig. 5.25). By
eliminating the parameter t we get
u
2
- [v -1/2(a + ~ )r = 1/4 (a -~ r
which shows that the whole circle has a center at (0, %(a+ a-^1 )) and
radius r =%la -a-^1 1. For a= 0 the circle degenerates into the real axis
u = t, v = 0.
y
I {.)
I II
I x
I
t t
I
I
i Y = m
z Z1 Z2
---I ----- ---~-....... t-- -
-%'!1'1 I 0 %'!1' 'l1' 3'!1'/2 2'11' 5'11'/2 x
I
I I t
I
I
u
Fig. 5.25