1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1
Complex Numbers 25

numbers other than -1 can be put into one-to-one correspondence with


the real numbers.

8. If u and v are unimodular, show that (u+v)/(l+uv) (uv i--1) is real.


9. If lzkl < 1, rk 2'.: O, and E~=l rk = 1, prove that


10. If IPI < 1 and lql < 1, prove that:


(a) I p-q I< 1 (b) IPI -lql
1 -pq 1 - lpllql I

p-q I
~ 1-pq


  1. Show that


-- =1
I

p-qi
1-pq
if either IPI = 1 or lql = 1, or if IPI = lql = 1 provided that p i-q.


  1. Prove the identity


IP+ ql^2 + IP -ql^2 = 2[IPl^2 + lql^2 l
In particular, if IPI = lql, then

IP+ ql^2 + IP -ql^2 = 4IPl^2



  1. Prove the identity


lz11^2 + lz2 l^2 + l;a 12 + lz1 + z2 + za 1

2

= lz1 + z2 l

2


  • h + za 1


2

+ lza + Z11

2


  1. Prove the identity
    11 - ab12 -la -bl2 = (1 + labl)2 -(lal + lbi)^2


15. If Re a > 0 and Re b > O, show that


la -bl < la+ bl



  1. Prove the identity
    .


(a - b)(l +cc)= (a - c)(l +be)+ (c - b)(l + ac)


*17. Show that


(1 + zw)(l + zw) ~ (1 + lzl^2 )(1 + lwl^2 )

and use it together with the identity in Problem 16 to prove that
la -bl(l + lcl2)1/2 ~ la -cl(l + lbl2)1/2 + le - bl(l + lal2)1/2


  1. Show that

Free download pdf