1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1
Differentiation 405


  1. J, Horvath, A generalization of the Cauchy-Riemann equations, Contrib.
    Differential Equations Univ. Md., 1 (1960), 39-58.

  2. J. R. Hundhausen, A generalization of discrete analytic and harmonic
    functions, J. Math. Anal. Appl., 25 (1969), 628-652.

  3. R. Isaacs, Monodriffic functions, National Bureau of Standards, Appl. Math.
    Ser., 18 (1952), 257-266.

  4. E. Kasner, A theory of polygenic (or non-monogenic) functions, Science, 66
    (1927), 581-582.

  5. E. Kasner, General theory of polygenic or nonmonogenic functions: the
    derivative congruence of circles. Proc. Nat. Acad. Sci. (USA), 14 (1928), 75-82.

  6. E. Kasner, The second derivative of a polygenic function, Trans. Amer. Math.
    Soc., 30 (1928), 803-818.

  7. E. Kasner, A complete characterization of the derivative of a polygenic
    function, Proc. Nat. Acad. Sci., 22 (1936), 172-177.

  8. J. D. Keckic, A characterization of certain nonanalytic functions, Bull. Inst.
    Pol. Iasi, 20 (1974), 41-44.

  9. P. W. Ketchum, Analytic functions of hypercomplex variables, Trans. Amer.
    Math Soc., 30 (1928), 641-667.

  10. P. W. Ketchum, A complete solution of Laplace's equation by an infinite
    hypervariable, Amer. J. Math., 51 (1929), 179-188.

  11. P. W. Ketchum, Solution of partial differential equations by means of
    hypervariables, Amer. J. Math., 50 (1932), 253-264.

  12. L. F. Kiser, Nonanalytic solutions of differential equations, University of
    Alabama dissertation, 1971.

  13. P. Krajkiewicz, Polyanalytic functions with exceptional values, Trans. Amer.
    Math. Soc., 197 (1974), 181-210.

  14. N. M. Kryloff, Sur les quaternions de W. R. Hamilton et la notion de la
    monogeneite, Izv. Akad. Nauk SSSR, 55 (1947), 787-788.

  15. E. Lammel, Uber eine zur Differentialgleichung (ao(8n /8xn) + ai(8n /
    8xn-^1 8y) + .. · + an(8n /8yn))u(x,y) = 0 gehorige Funktionentheorie I, Math.
    Ann., 122 (1950), 109-126.

  16. E. Lammel, Generalizaciones de la. teorta de las funciones de variables
    complejas, UNESCO Publication, Villavicencio-Mendoza, Argentina, 1954,
    191-197.



    1. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, 2nd ed.,
      Grund. Math. Wissenchaften, B. 126, Springer-Verlag, Berlin, 1973.



Free download pdf