448 Chapter 7
Now any two admissible sequences s 1 and s 2 have a common refinement
sa = s1 U s 2. Since the result agrees for s1 and sa as well as for s2 and sa,
we conclude that the sum in (7.10-10) is the same for any two admissible
sequences s1 and s2.
Definitions 7 .8 Following Eberlein, consider the lattice
Lmn = {(j,k): j = 0, 1, ... ,m;k = 0,1, ... ,n}
m ~ 1, n ~ 1, and a complex function F: Lmn --+ C. Then define
(fj_xF)(j, k) = F(j + 1, k) - F(j, k) for (j, k) E Lm-1,n
and
(fj_yF)(j, k) = F(j, k + 1) - F(j, k) for (j, k) E Lm,n-1
Also, when F: Lm-1,n-1 --+ C define
n-1 m-1
ff Ftlx/).y = L ~ F(j,k)
L mn h=O J=O
For a pair of complex functions P, Q such that P: Lm-l,n --+ C and
Q: Lm,n-1 --+ C set
m-1 n-1 m-1 n-1
f P~1x+Q/).y = ~ P(j,O)+ LQ(m,k)-~ P(j,n)-LQ(O,k)
8Lmn J=O k=O J=O k=O
Lemma 7.3 (Discrete Green Theorem). We have
f P ~x + Q /).y = j f ( /).x Q - /).yP) /).x /).y
8Lmn Lmn
Proof A simple computation gives
m-1 n-1
- L: L[P(j, k + 1) - P(j, k)]
j=O k=O
n-1 m-1
= L[Q(m,k)-Q(O,k)]-L[P(j,n)-P(j,O)]
k=O j=O
m-1 n-1 m-1 n-1
= LP(j,0)+ LQ(m,k)-LP(j,n)-LQ(O,k)
j=O k=O j=O k=O