Integration
R^2 - r^2 {2" d'lj;
= 271" lo J(() !( - z!^2
since
( z (( -zz R^2 - r^2
( - z + ( -z = !( - zl^2 = !( - z!2
Next, adding (7.28-5) to (7.28-2), we have
f(z) = 2~ 12" !(() [ ( ~ z + z ~ (] d'lj;
= f(O) + 2_ {
2
" J(() 2iRrsin(B -'lj;) d'lj;
271" lo · !( - zl^2
since
( z z z
--+---=l+------
(-z z-( (-z (-z
503
(7.28-6)
(7.28-7)
Rrei(IJ-'efl)_Rre-i(IJ-'efl) _
1
2iRrsin(B-'lj;)
= 1 + !( - z!2 - + !( - z!2
Letting
f(z) = u(r, B) + iv(r, B)
J(() = u(R,'lj;) +iv(R,'lj;)
we get, by equating real parts in (7.28-6),
R2 - r2 {2" d'lj;
u(r, B) = 271" Jo u(R, 'ljJ) !( - z!2
and by equating imaginary parts in (7.28-7),
.. 1 12 " 2iRr sin( e -'ljJ)
iv(r,B)=iv(O)+- u(R,'lj;) I( 12 d'lj;
271" 0 - z
Addition of (7.28-8) and (7.28-9) yields Schwarz's formula,
(7.28-8)
(7.28-9)
f(z) = iv(O) + 2~ 12" u(R,'lj;) R2 - r2 ~t~R:,:in(B - 'lj;) d'lj;
1 127' ( + z
=iv(O)+ -
2
u(R,'lj;)-,.. -d'lj;
71" 0 .,,-z
since
(( + z)((-z) = R^2 - r^2 + 2iRrsin(B - '1/J)
and