Integration 505
(
( z( )
= ( - z + R^2 - z( d1/J
(
( z )
= (-z + (-z d1f-i
R2 -r2
= I( - zl2 d1/J
so that (7.28-12) becomes
u(rei^9 ) = R2 - r212... · u(Rei.P) ---d1/J
27r a IC -zl2
From Cauchy's formula for the upper half-plane (Exercises 7.3, problem
12) we can derive, in a similar fashion, Poisson's formulas for that region.
Corollary 7.19 If f = u +iv is analytic on Imz 2 0 and such that
lf(z)j < Alzl-m(A > 0, m > 0), then
for y = Im z > 0.
Proof We have
u ( x,y ) = -^1 1+= yu(t, I 0) 12 d t
7r -oo t - z
v ( x,y ) = -^1 1+= (x -I t)u(t, 12 0) d t
7r -oo t - z
f(z) = ~ 1+= f(t)dt
27ri -oo t - z
for Imz > 0. Also,
0 = ~ 1+= f(t) ~t
27ri -oo t - z
(7.28-14)
(7.28-15)
(7.28-16)
Hence, by subtracting, then adding, (7.28-15) and (7.28-16), we get
.f(z) = ~ 1+= (-
1
- ~) f(t)dt
27ri -oo t - z t - z
- ~) f(t)dt
= .!. j+oo yj(t) dt
7r -oo it -zl2 (7.28-17)
f(z) = -.^1 1+= ( -^1 + -_ 1 ) f(t) dt
27ri -oo t - z t - z
= 2-1+= (t - x )f(t) dt
7ri _ 00 jt - zl^2
(7.28-18)