618 Chapter^8
= (z + n -l)(z + n - 2)r(z + n - 2)
= (z + n - l)(z + n - 2) · · · (z + l)zr(z) (8.20-11)
By writing this formula in the form
r(z) = r(z + n)
z(z + 1) · · · (z + n - 1)
we may define r(z) in the strip -n < Rez:::; -n + 1, z '=/= -n + 1 in terms
of the values of r(z) in 0 < Rez :::; 1.
E I r( 3 5)
_. r(o.s) _ ..!§.... ~
xamp e. - · - (-a.s)(-2.s)(-i.s)(-o.s) - 10s y7r.
(5) By letting z = 1 in (8.20-11), we get
r(n + 1) = n(n -1) ... 2.1r(1) = n! (8.20-12)
Thus r( z + 1) generalizes the factorial function of the· natural numbers.
In fact, it was the problem of generalizing n! to real values that led Euler
to the definition o:f the gamma function. It must be pointed out that this
interpolation problem does not admit a unique solution, for if g(z) is any
meromorphic periodic function of period 1, with g(l) = 1, and we define
f(z) = g(z)r(z), then ·
f(z + n) = g(z + n)r(z + n) = g(z)r(z + n)
and letting z = ), we find that
f(n + 1) = g(l)r(n + 1) = n!
For instance, we may take g(z) = cos27r(z - 1).
Remark Formula (8.20-12) is also valid for n = 0 with the usual
convention O! = 1.
(6) This property follows from the fact that
r"(x) = 1
00
e-^1 t"'-^1 (1nt)^2 dt > 0 for x > 0
- (7) From (8.20-10) and the analyticity (hence continuity) of r at z = 1,
we get
1 1m. r( z=1m ) 1. r( z + 1) =oo
z-+ff z-+0 z
Similarly, the formula
r(z)~ r(z+n+l)
z(z + 1) .. · (z + n)