622 Chapter^8
We have
roo r t n
lo e-ttz-i dt - lo ( 1 --;i) tz-i dt
=in [e-t - (1- ~) n] tz-i dt + 100 e-ttz-i dt
Given e > 0, there exists Ni such that n ~ Ni implies that
1100 e-te-i dt' < %f
since the r-integral converges when Rez > 0. On the other hand, for
0 :5 t ::; n, or 0 :5 t/n :5 1, we have
t t -i
1 + ;:;: :5 et/n :5 ( 1 - ;:;: )
so that
(
t )-n t ) n
1 + ;; ~ e-t ~ ( 1 - ;:;:
and hence
0:5e -t - ( 1--;:;: t ) n =e -t [ 1-e t ( 1-;:;: t ) n]
Since
we get
e-t - ( 1 - ~ r :5 e-t [ 1 - ( 1 - :: ) n] :5 e-t ~
Therefore, if we let x = Re z, we have
11n [ e-t - ( 1 - ~ r] tz-i dt' :5 ~ 1n e-ttx+l dt
< -^11 e-ttx+i dt = - < -€
00
A 1
n 0 n 2
for n > [2A/e] + l = N 2 , where A = f 000 e-ttx+i dt = r(x + 2). Thus, if
n > max(Ni,N2), we have
1100 e-ttz-i dt - g(n, z)I < f
or