1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1
624 Chapter 8

If in (8.20-20) we let n = 1, 2, 3, ... , n - 1 and add the resulting


inequalities, we obtain


[ ( )

2 3 2 n n-1 l ( ) 1 2 3 n n-1
ln - - · · · (--) + -ln - - · · · -- = n - 1 + L ak
1 2 n - 1 2 1 2 n - 1 k=l
or
n 1 n-1
· ln !!:__ n! + - 2 ln n = n - 1 + " L,,; ak
k=l
Similarly, from (8.20-21) we get

n-l 1 ( 1) 1
"ak L,,; < - 12 1 - -n · < - 12
k=l

(8.20-22)

(8.20-23)

Therefore, if we take antilogarithms in (8.20-22) and make use of (8.20-23),
we find that

(8.20-24)
or
__ ennl ._ - 1-~n-1 L....1 Olk 11/12

nn+1/2 - e > e (8.20-25)

The sequence on the left of (8.20-25) is strictly decreasing (as the equality
shows), and bounded below by e^11112. Hence it has a positive limit, say
L. We have
e2n(n1)2 (2n)2nH/2
L = I}L-^1 = lim. · lim
n--+oo n2n+l n--+oo e2n(2n )!

. (n!)222n+l/2
= J~1!, (2n)!nl/2 (8.20-26)


The so-called Vvallis formula, namely,

II


"" ( 2n 2n ) 1
n=l 2n-1. 2n+l = 211"

can also be written as

. (n!)2. 22n
hm = ,,/1r
n--+oo (2n )!nl/2


I.

which shows that the limit sought in (8.20-26) is L = V2if.
Hence



  • enn!.
    n-+oo bm -+1/2 nn =...&

Free download pdf