Sequences, Series, and Special Functions 643
a~ (a+l)n n a (
= - L...J I( l) z =-cl> a+l,c+l;z)
c n=O n. c + n c.
Hence after m differentiations we have
~: «P(a, c; z) = ~:j: «P(a + m, c + m; z); m=l,2,. ..
(2) Starting with the right-hand side, we find that
c""' ""'( a - 1, c; z ) + Z'±' ""'( a, c + 1; z ) = c + L...J ~ '( (a -^1 ) )n z n
n=l n. c + 1 n-1
+ f (a)n zn+l
n=O n!( c + 1 )n
~ (a-1)
= c+ LJ n Zn
n=l n!(c + l)n-1
~ (a)n-1 n
+ LJ z
n=l (n - l)!(c + l)n-1
~ c(a)n n ( )
= c + L...J -i--( ) z = eel> a, c; z
n=1 n. c n
This is one of the (~) = 6 relations connecting cl> with any two of the
contiguous functions «P(a ± 1, c; z) and «P(a, c ± l; z). The other five are
listed in Exercises 8.10, problem 11.
(3) By (8.22-7) we have, mutatis mutandis,
(a)n =. r(c) 1
1
ta+n-1(1-t)c-a-1 dt
(c)n r(a)r(c - a) 0
(8.23-2)
provided that Rec> Rea> 0, n = 0, 1, 2, ... By using (8.23-2) in (8.23-1)
we get
00 1.
cI>(a c· z) = r(c) " zn 1 ta+n-1(1 -t)c-a-1 dt
' ' r( a )r( c - a) ~ nl 0
= r(c) 11 ta-1(1-ty-a-1 f (zt)n dt
r(a)r(c - a) o n=O n!
(8.23-3)