Singularities/Residues/Applications 657
Theorem 9.3 ·Let z = a be an isolated singularity of f. Then a is a
pole of f iff
lira Z-+a lf(z)I = oo
Proof 1. Suppose that a f=. oo is a pole of multiplicity m ( m 2:: 1) of f.
By {9.2-4) we have
. f(z) = h(z)
(z -a)m
where h(z) is analytic in a neighborhood of a and h(a) f=. 0. It follows that
there is a 81 > 0 such that lz - al < 81 implies that
llh{z)l - lh(a)ll:::; lh(z) - h(a)I <^1 / 2 lh{a)I
or
so that
lh{z)I >^1 / 2 lh(a)I
if lz - al < 81 {Fig. 9.2). Hence we have
lf{z)I > l/2lh(a)I (9.3-1)
lz-alm
provided that 0 < lz - al < 81. Now, for a given K > 0 we have
l/2lh(a)I > K (9.3-2)
lz-alm
( )
1/m •
if 0 < lz - al < l~~I = 82 , say. Hence we obtain from {9.3-1)
and (9.3-2),
lf{z)I > K
Fig. 9.2