Singularities/Residues/Applications
Exercises 9.3
- Show that j ( 3 ~
2
~
2
1 ~~~ ~ 4 ) = ~ 7ri, c+: z = 3eit, O $ t $ 271".
c+
J
(3z^7 + 4) dz. + it
- Show that zB _
1
= 6m, C : z = 2e , 0 $ t $ 271".
c+
679
3 Sh h t
J
. ow t a sin z d '(. h^1. ) c+ it
z^3 +z^2 +z+^1 z = 7rZ sm - sin 1 , : z = 2e
c+
0 < t < 271".
- Sh:w t~at j tan7rzdz = -4ni, c+: z = neit, O $ t $ 271", (n > 0).
c+ - Show that j .dhz {-
4
7l"i n odd c+: z = (n + 1/ 2 )7reit, o $ t $
sm z O neven
c+
271" (n > 0).
- Show that = -^1 / 2 7ri, c-: z = e-it, 0 $ t $ 271".
J
ezdz
z^2 (z^2 - 4)
c-
- Show that j
c+
Z^2 + Z -2 d -^17 7l"Z. c+.
( z - 1 )( z - 4) z - 24 ' · z -^2 e ' it^0 < t <^2 71" ·
- Let P(z) = aozn +···+an (ao =/: 0) and Q(z) = bozm + · · · + bm
(bo =f=. 0) be polynomials prime to each other, and let C be a simple
closed contour enclosing all zeros of Q(z). Prove that
--dz= bo
J
P(z) {
2
7riao if m - n = 1
c+ Q(z) 0 if m - n;::: 2
9. Let f be analytic, except for a finite number of isolated singularities,
in a region G that contains a deleted neighborhood of oo. Consider a
simple closed contour C in G not passing through any singularity off
and outside of which f is analytic except for the singularities bi, b 2 ,
... , bm (bk=/: oo). Prove that
j f(z)dz=27riE!t~f+211"i!~f
c- k=l.
- Evaluate: j [sin(a/z)/(z^2 + b^2 )]dz, where a,b =f=. O, c+:
c+
0 $ t $ 271", 0 < r =/: !bl. Hint: Use the result in problem 9.
z = reit