Singularities/Residues/Applicatio11s
y
y=0
y=20hr
(^0) e
Fig. 9.9
Then if a > 0, we have
'
lim j eiaz f(z) dz= 0
R--+oo
'Y
(Fig. 9.10).
Proof For every e > 0 there exist· Rf such that
lf(z)I < e for R >Rf
. Hence if R > max( Ro, Rf), we have
J eiaz J(z) dz S eR lp e-aRsin e d() S eR 1-n: e-aRsin 8 d()
'Y
681
(9.10-2)
{1/2-n: 11/2-n:
= 2eR Jo e-aRsin8 d() S 2eR o e-aR(29/-n:) d()
_ - f.7r - (1 -e -aR) < -f.7r
a a
x
Fig. 9.10