1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1
Singularities/Residues/Applicatio11s

y
y=0
y=20hr

(^0) e
Fig. 9.9


Then if a > 0, we have

'
lim j eiaz f(z) dz= 0
R--+oo
'Y
(Fig. 9.10).

Proof For every e > 0 there exist· Rf such that

lf(z)I < e for R >Rf


. Hence if R > max( Ro, Rf), we have

J eiaz J(z) dz S eR lp e-aRsin e d() S eR 1-n: e-aRsin 8 d()


'Y

681

(9.10-2)

{1/2-n: 11/2-n:
= 2eR Jo e-aRsin8 d() S 2eR o e-aR(29/-n:) d()

_ - f.7r - (1 -e -aR) < -f.7r
a a

x

Fig. 9.10
Free download pdf