Singularities/Residues/Applications 709
-R x
Fig. 9.21
Under the stated conditions the integrand za f(z) is a single-valued ana-
lytic function on and within c+' except at those poles bk ( k = 1, 2, ... ' m)
that may lie in the upper half-plane. Hence by the residue theorem, we have
or
J zaf(z)dz= i: xaf(x)dx+ J zaf(z)dz+ ip-
8
xaf(x)dx
a+ 71
+ J za f(z) dz+ {R xa f(x) dx + J za f(z) dz= 27ri f ~es za f(z)
_ }p+8 r+ k=l z-bk
72
m
= 27ri'"""' Res za J(z)
L.J z=bk
k=l
(9.11-36)
By letting x = -x'(x' > 0) in the first integral of (9.11-36), we get
1: ( -x't f (-x')(-dx') = eiTra 1R x'a f( -x') dx' (9.11-37)
Also,
lim [ r-
8
zaf(x)dx+ {R xaf(x)dx] =(PV)1R xaf(x)dx
8__,.Q Jr }p+8 r