1550251515-Classical_Complex_Analysis__Gonzalez_

(jair2018) #1
Singularities/Residues/Applications 757

where

0 ::=; Argwl/m < 27r/m

How~ver, to w = 0 'there corresponds only one inverse image, namely,

z = 0.

Exercise 9.10


Find the largest neighborhood of the origin where w = f(z) = z^2 + z is
one-to-one. Express z = f-^1 (w) in terms of a series in powers of w.

Bibliography



  1. E. Badell and M. 0. Gonzalez, Calculo de una integral de fase por el metodo
    de variable compleja, Rev. Soc. Cub. Ci. Fis. Mat., 1 (1942), 37-41.

  2. J. Bass, Exercises in Mathematics, Academic Press, New York, 1966.

  3. W. R. Derrick, Introductory Complex Analysis and Applications, Academic
    Press, New York, 1972.



    1. J. Farrell and B. Ross, Note on evaluating certain real integrals by Cauchy's
      residue theorem, Amer. Math. Monthly, 68 (1961), 151-152.



  4. B. A Fuchs and B. V. Shabat, Functions of a Complex Variable and Some of
    Their Applications, Vol. 1, Pergamon Press, Oxford, 1964.

  5. I. Glicksberg, A remark on RoucM's theorem, Amer. Math. Monthly, 83
    (1976), 186-187.

  6. F. Gomes Teixeira, Sur les series ordennees suivant les puissances d'une
    fonction donnee, J. Reine Angew. Math., 122 (1900), 97-123.

  7. M. 0. Gonzalez, Una generalizaci6n de la formula de Cauchy y su relaci6n con
    el desarrollo en serie de Biirmann, Rev. Cienc. Lima (Peru), 41, 549-553.

  8. F. P. Greenleaf, Introduction to Complex Variables, W. B. Saunders,
    Philadelphia, 1972.

  9. A. S. B. Holland, Complex Function Theory, Elsevier North-Holland, New
    York, 1980.

  10. A. Hurwitz, Uber die Nullstellen der Besse'shen Funktionen, Math. Ann., 33
    (1889), 246-266.

  11. J. L. Lagrange, Mem. Acad. Berlin, 24 (1770), Oeuvres, 2, 25.

  12. E. Lindelof, Le Calcul des Residues, Gauthier-Villars, Paris, 1905.

Free download pdf