- L. N. Johnson, Protein kinase inhibitors: Contributions from
structure to clinical compounds.Q. Rev. Biophys. 42 ,1– 40
(2009). doi:10.1017/S0033583508004745; pmid: 19296866 - C. Doeriget al., Malaria: Targeting parasite and host cell
kinomes.Biochim. Biophys. Acta 1804 , 604–612 (2010).
doi:10.1016/j.bbapap.2009.10.009; pmid: 19840874 - Z. Zhou, X. D. Fu, Regulation of splicing by SR proteins and SR
protein-specific kinases.Chromosoma 122 , 191–207 (2013).
doi:10.1007/s00412-013-0407-z; pmid: 23525660 - S. Agarwalet al., Two nucleus-localized CDK-like kinases with
crucial roles for malaria parasite erythrocytic replication are
involved in phosphorylation of splicing factor.J. Cell. Biochem.
112 , 1295–1310 (2011). doi:10.1002/jcb.23034;
pmid: 21312235 - E. Talevich, A. Mirza, N. Kannan, Structural and evolutionary
divergence of eukaryotic protein kinases in Apicomplexa.
BMC Evol. Biol. 11 , 321 (2011). doi:10.1186/1471-2148-11-321;
pmid: 22047078 - M. Schneideret al., Human PRP4 kinase is required for
stable tri-snRNP association during spliceosomal B complex
formation.Nat. Struct. Mol. Biol. 17 , 216–221 (2010).
doi:10.1038/nsmb.1718; pmid: 20118938 - S. Kernet al., Inhibition of the SR protein-phosphorylating CLK
kinases of Plasmodium falciparum impairs blood stage
replication and malaria transmission.PLOS ONE 9 , e105732
(2014). doi:10.1371/journal.pone.0105732; pmid: 25188378 - F. J. Gamoet al., Thousands of chemical starting points
for antimalarial lead identification.Nature 465 , 305– 310
(2010). doi:10.1038/nature09107; pmid: 20485427 - P. Dranchaket al., Profile of the GSK published protein kinase
inhibitor set across ATP-dependent and-independent
luciferases: Implications for reporter-gene assays.PLOS ONE
8 ,e57888 (2013). doi:10.1371/journal.pone.0057888;
pmid: 23505445 - R. Axel, Scents and sensibility: A molecular logic of olfactory
perception (Nobel lecture).Angew. Chem. Int. Ed. 44 ,6110– 6127
(2005). doi:10.1002/anie.200501726;pmid:16175526 - T. Spangenberget al., The open access malaria box: A drug
discovery catalyst for neglected diseases.PLOS ONE 8 ,e62906
(2013). doi:10.1371/journal.pone.0062906; pmid: 23798988 - Q. Gaoet al., Evaluation of cancer dependence and druggability
of PRP4 kinase using cellular, biochemical, and structural
approaches.J. Biol. Chem. 288 , 30125–30138 (2013).
doi:10.1074/jbc.M113.473348; pmid: 24003220 - J. M. Fraileet al., USP39 Deubiquitinase Is Essential forKRAS
Oncogene-driven Cancer.J. Biol. Chem. 292 , 4164– 4175
(2017). doi:10.1074/jbc.M116.762757; pmid: 28154181 - H. Hadjivassiliou, O. S. Rosenberg, C. Guthrie, The crystal
structure of S. cerevisiae Sad1, a catalytically inactive
deubiquitinase that is broadly required for pre-mRNA splicing.
RNA 20 , 656–669 (2014). doi:10.1261/rna.042838.113;
pmid: 24681967 - O. V. Makarova, E. M. Makarov, R. Lührmann, The 65 and
110 kDa SR-related proteins of the U4/U6.U5 tri-snRNP are
essential for the assembly of mature spliceosomes.EMBO J.
20 , 2553–2563 (2001). doi:10.1093/emboj/20.10.2553;
pmid: 11350945 - R. Hui, M. El Bakkouri, L. D. Sibley, Designing selective
inhibitors for calcium-dependent protein kinases in
apicomplexans.Trends Pharmacol. Sci. 36 , 452–460 (2015).
doi:10.1016/j.tips.2015.04.011; pmid: 26002073
30. S. Louridoet al., Calcium-dependent protein kinase 1 is an
essential regulator of exocytosis in Toxoplasma.Nature 465 ,
359 – 362 (2010). doi: 10 .1038/nature09022; pmid: 20485436
31. B. F. Kafsack, H. J. Painter, M. Llinás, New Agilent platform
DNA microarrays for transcriptome analysis of Plasmodium
falciparum and Plasmodium berghei for the malaria research
community.Malar. J. 11 , 187 (2012). doi:10.1186/1475-2875-11-
187; pmid: 22681930
32. M. J. Gardneret al., Genome sequence of the human malaria
parasite Plasmodium falciparum.Nature 419 , 498–511 (2002).
doi:10.1038/nature01097; pmid: 12368864
33. D. A. Fidock, P. J. Rosenthal, S. L. Croft, R. Brun, S. Nwaka,
Antimalarial drug discovery: Efficacy models for compound
screening.Nat. Rev. Drug Discov. 3 , 509–520 (2004).
doi:10.1038/nrd1416; pmid: 15173840
34. J. Swannet al., High-Throughput Luciferase-Based Assay for
the Discovery of Therapeutics That Prevent Malaria.
ACS Infect. Dis. 2 , 281–293 (2016). doi:10.1021/
acsinfecdis.5b00143; pmid: 27275010
35. N. M. Brancucci, I. Goldowitz, K. Buchholz, K. Werling, M. Marti,
An assay to probe Plasmodium falciparum growth,
transmission stage formation and early gametocyte
development.Nat. Protoc. 10 , 1131–1142 (2015). doi:10.1038/
nprot.2015.072; pmid: 26134953
36. J. N. Burrowset al., New developments in anti-malarial target
candidate and product profiles.Malar. J. 16 , 26 (2017).
doi:10.1186/s12936-016-1675-x; pmid: 28086874
37. R. Roskoski Jr., A historical overview of protein kinases and
their targeted small molecule inhibitors.Pharmacol. Res. 100 ,
1 – 23 (2015). doi:10.1016/j.phrs.2015.07.010; pmid: 26207888
38. C. W. McNamaraet al., Targeting Plasmodium PI(4)K to
eliminate malaria.Nature 504 , 248–253 (2013). doi:10.1038/
nature12782; pmid: 24284631
39. I. S. Lucet, A. Tobin, D. Drewry, A. F. Wilks, C. Doerig,
Plasmodium kinases as targets for new-generation
antimalarials.Future Med.Chem. 4 , 2295–2310 (2012).
doi:10.4155/fmc.12.183; pmid: 23234552
40. W. A. Guiguemdeet al., Chemical genetics of Plasmodium
falciparum.Nature 465 , 311–315 (2010). doi:10.1038/
nature09099; pmid: 20485428
41. D. Plouffeet al., In silico activity profiling reveals the
mechanism of action of antimalarials discovered in a high-
throughput screen.Proc. Natl. Acad. Sci. U.S.A. 105 , 9059– 9064
(2008). doi:10.1073/pnas.0802982105;pmid: 18579783
42. M. Rottmannet al., Spiroindolones, a potent compound class
for the treatment of malaria.Science 329 , 1175–1180 (2010).
doi:10.1126/science.1193225; pmid: 20813948
43. I. D. Goodyer, T. F. Taraschi, Plasmodium falciparum: A simple,
rapid method for detecting parasite clones in microtiter plates.
Exp. Parasitol. 86 , 158–160 (1997). doi:10.1006/
expr.1997.4156; pmid: 9207746
44. L. M. Sanzet al., P. falciparum in vitro killing rates allow to
discriminate between different antimalarial mode-of-action.
PLOS ONE 7 , e30949 (2012). doi:10.1371/journal.
pone.0030949; pmid: 22383983
ACKNOWLEDGMENTS
We thank the Proteomics facility of LaCTAD (Laboratório Central de
Tecnologias de Alto Desempenho em Ciências da Vida, UNICAMP,
Campinas, Brazil); A. da Silva Santiago, A. M. Fala, and P. Zonzini
Ramos for assistance with PRPF4B protein production; Aché
Laboratórios Farmacêuticos for provision of compound A; E. Peat
and D. Armstrong for the maintenance of the IBAHCM/Glasgow
University mosquito insectaries; the Scottish National Blood
Transfusion service for the provision of human blood and serum;
N. Emami (Stockholm University) for assistance with serum supplies;
P. Johnson (IBAHCM, University of Glasgow) for discussions on
GLMM; and R. Tewari for providing theP. bergheicDNA library.
Funding:Supported by an MRC Toxicology Unit program grant
(A.B.T., M.M.A.), MRC Developmental Gap Fund (A.S.-A.), Lord Kelvin
Adam Smith Fellowship (M.M.A.), GSK Open Lab Foundation
Award (A.S.-A.), joint MRC Toxicology Unit and MRC Unit the Gambia
PhD program (O.J.), and Daphne Jackson Fellowship (D.M.). A.P.W.,
M.M., M.M.A., K.C., N.V.S., and S.B.M. are supported by Wellcome
Centre for Integrative Parasitology Core support award WT104111AIA.
E.A.W. is supported by grants from the NIH (5R01AI090141 and
R01AI103058) and by grants from the Bill & Melinda Gates
Foundation (OPP1086217, OPP1141300) as well as by Medicines for
Malaria Venture (MMV). Drug WR99210 for selection of transgenic
parasites was a gift from Jacobus Pharmaceuticals. M.M. is supported
through WT award 172862-01 and a Wolfson Merit award from the
Royal Society. The Structural Genomics Consortium (SGC) is a
registered charity (number 1097737) that receives funds from AbbVie,
Bayer Pharma AG, Boehringer Ingelheim, the Canada Foundation for
Innovation, the Eshelman Institute for Innovation, Genome Canada,
the Innovative Medicines Initiative (European Union [EU]/European
Federation of Pharmaceutical Industries and Associations [EFPIA])
(ULTRA-DD grant no. 115766), Janssen, Merck & Company, Merck
KGaA, Novartis Pharma AG, the Ontario Ministry of Economic
Development and Innovation, Pfizer, the São Paulo Research
Foundation (FAPESP number 2013/50724-5), Takeda, and the
Wellcome Trust (106169/ZZ14/Z). E.F.A. was supported by the
Tres Cantos Lab Foundation (grant TC125). A.B.C. was supported
by a Scottish Funding Council Global Challenges Research Fund
award to L.C.R.-C.Author contributions:A.B.T. conceived the
project, designed experiments, analyzed data, and was the
primary author; M.M.A., A.S.-A., O.J., and L.C.R.-C. designed
experiments, conducted experiments, analyzed data, and
contributed to writing; E.L.F., A.M., K.M., A.B.C., D.S., N.M.B.B.,
S.B.M., Y.A.K., N.V.S., J.A., D.M., L.S., K.D., C.J., C.Z., M.J.V.,
M.J.L.-M., and M.L.L. conducted experiments; G.C. and K.C.
conducted data analysis; P.H.C.G., J.M.E., D.C., D.C.N., A.P.W.,
A.G.J., E.F.A., M.M., E.A.W., and F.J.G. contributed to experimental
design and to writing the manuscript.Competing interests:The
authors declare no conflicts of interest.Data and materials
availability:The GSK compounds were obtained under a materials
transfer agreement from GSK. All other data are available in the
manuscript or the supplementary materials. Some of the data in this
manuscript have been deposited atwww.biorxiv.org/content/
10.1101/404459v1.article-info.
SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/365/6456/eaau1682/suppl/DC1
Materials and Methods
Figs. S1 to S13
Tables S1 to S5
References ( 45 – 51 )
11 July 2018; resubmitted 15 March 2019
Accepted 12 July 2019
10.1126/science.aau1682
Alamet al.,Science 365 , eaau1682 (2019) 30 August 2019 8of8
RESEARCH | RESEARCH ARTICLE