expanded genomic targeting via the minimal
Cas12c2 PAM, high-fidelity genome editing using
Cas12i nicking ( 27 ), or sensitive and durable
nucleic acid detection via collateral cleavage by
the thermostable Cas12g1 ( 18 , 22 ). We antici-
pate that our discovery framework will yield
new CRISPR-Cas variants as genomic and meta-
genomic sequence databases grow, expanding the
understanding of CRISPR biology and the nucleic
acid manipulation toolbox.
REFERENCES AND NOTES
- D. Bursteinet al.,Nature 542 , 237–241 (2017).
- S. Doronet al., Science 359 , eaar4120 (2018).
- E. V. Koonin, K. S. Makarova, Y. I. Wolf,Annu. Rev. Microbiol. 71 ,
233 – 261 (2017). - R. Barrangou, P. Horvath,Nat. Microbiol. 2 ,17092(2017).
- R. Barrangouet al.,Science 315 , 1709–1712 (2007).
- D. B. T. Cox, R. J. Platt, F. Zhang,Nat. Med. 21 ,121– 131
(2015). - S. E. Klompe, S. H. Sternberg, Harnessing“A Billion Years
of Experimentation”: The Ongoing Exploration and
Exploitation of CRISPR–Cas Immune Systems.CRISPR J. 1 ,
141 – 158 (2018). - G. J. Knott, J. A. Doudna,Science 361 ,866–869 (2018).
- K. S. Makarovaet al.,Nat. Rev. Microbiol. 13 , 722–736 (2015).
10. S. Shmakovet al.,Mol. Cell 60 , 385–397 (2015).
11. S. Shmakovet al.,Nat. Rev. Microbiol. 15 ,169–182 (2017).
12. G. Gasiunas, R. Barrangou, P. Horvath, V. Siksnys,
Proc. Natl. Acad. Sci. U.S.A. 109 , E2579–E2586 (2012).
13. M. Jineket al.,Science 337 , 816–821 (2012).
14. E. V. Koonin, K. S. Makarova, F. Zhang,Curr. Opin. Microbiol.
37 ,67– 78 (2017).
15. B. Zetscheet al.,Cell 163 , 759–771 (2015).
16. J. S. Chenet al.,Science 360 , 436–439 (2018).
17. O. O. Abudayyehet al.,Science 353 , aaf5573 (2016).
18. A. East-Seletskyet al.,Nature 538 , 270–273 (2016).
19. W. X. Yanet al.,Mol. Cell 70 , 327–339.e5 (2018).
20. L. B. Harringtonet al.,Science 362 , 839–842 (2018).
21. J. S. Gootenberget al.,Science 360 , 439–444 (2018).
22. J. S. Gootenberget al.,Science 356 , 438–442 (2017).
23. D. B. T. Coxet al.,Science 358 , 1019–1027 (2017).
24. S. Konermannet al.,Cell 173 , 665–676.e14 (2018).
25. D. Donget al.,Nature 532 , 522–526 (2016).
26. T. Yamanoet al.,Cell 165 , 949–962 (2016).
27. F. A. Ranet al.,Cell 154 , 1380– 1389 (2013).
28. J. H. Huet al.,Nature 556 ,57–63 (2018).
ACKNOWLEDGMENTS
We thank the entire Arbor Biotechnologies team for support and
comments on this work.Funding:Arbor Biotechnologies is a
privately funded company. K.S.M. and E.V.K. are supported by
the intramural program of the U.S. Department of Health
and Human Services (to the National Library of Medicine).
Author contributions:W.X.Y. and D.A.S., with input from P.H.,D.R.C., L.E.A., J.M.C., E.K.S., S.S., S.C., and A.J.G., conceived
and designed the study. D.R.C. and D.A.S. designed and
implemented the computational searches, with additional input
from K.S.M. and E.V.K., including phylogenetic analysis and
classification. W.X.Y., D.A.S., P.H., L.E.A., J.C., E.K.S., S.S., S.C.,
and A.J.G. performed all of the experimental work and analyzed
the data. W.X.Y. and D.A.S. wrote the manuscript with input
from E.V.K. and help from all authors.Competing interests:
W.X.Y., P.H., L.E.A., J.M.C., E.K.S., S.S., S.C., A.J.G., D.R.C.,
and D.A.S. are employees and shareholders of Arbor
Biotechnologies, Inc. W.X.Y., D.R.C., and D.A.S. are current or
former officers and D.R.C. is a director of Arbor Biotechnologies.
Arbor Biotechnologies has filed patents related to this work.
Data and materials availability:Alldataareavailableinthe
manuscript or the supplementary material. All reagents are
available to the academic community through Addgene.
Sequencing data are available on the NCBI Sequence Read
Archive under Bioproject ID PRJNA496291.SUPPLEMENTARY MATERIALS
http://www.sciencemag.org/content/363/6422/88/suppl/DC1
Materials and Methods
Figs. S1 to S19
Tables S1 to S10
References ( 29 – 33 )
14 October 2018; accepted 20 November 2018
Published online 6 December 2018
10.1126/science.aav7271Yanet al.,Science 363 ,88–91 (2019) 4 January 2019 4of4
Fig. 4. In vivo dsDNA interference by Cas12c.
(A) Evaluation of a minimal active system for Cas12c,
with heatmaps showing strongly depleted CRISPR
arrays from in vivo screening in different Cas12c
system compositions. Gray boxes indicate data not
available. (B) (Top) Distribution of bit scores for
all permutations of 1- to 3-nt motifs within the
target and 15-nt flanking sequences corresponding
to strongly depleted arrays. (Bottom) Web logos
from target-flanking sequences. (C) Overview
of minimal components and interference
mechanisms of Cas12g, -h, -i, and -c. Asterisks
denote putative mechanisms subject to
additional validation.A B
C
Cas12h,i binary complex
5’ crRNA3’Cas12h: 870 - 924aa;
Cas12i: 1033 - 1093aa3’ 5’ssRNAssDNA ssDNAssDNA?5’3’ 3’5’
Cis TransDNA RNA
Cleavage:3’5’ * 5’3’ Substrate:
ssDNA or ssRNAcleavageSystem
componentsdsDNA cleavageCas12c ternary complexcrRNAtracrRNA5’
3’ 5’3’Cas12c: 1209 - 1330aa3’ 5’
*?Subtype V-C Subtype V-H, I
Cas12g ternary complex3’
3’ 5’5’ crRNAtracrRNA
Cas12g: 720 - 830aassRNA3’ 5’
?Subtype V-GDistance to 5’ target endBit score^012 2 2-6Bit score04
3
2
1Cas12c1 Cas12c2 OspCas12c1nt 2nt 3nt
# nt in motif permutation
(log)800<5
Screen
HitsCas1dCas12cCas12c (WT)NoncodingOspCas12cCas12c2Cas12c1top strand bottom strandCRISPR array expressionRESEARCH | REPORT
on January 7, 2019^http://science.sciencemag.org/Downloaded from