13.7 Exercises 1834.Strong Convexity with Respect to General Norms:
Throughout the section we used the` 2 norm. In this exercise we generalize
some of the results to general norms. Let‖·‖be some arbitrary norm, and letf
be a strongly convex function with respect to this norm (see Definition 13.4).
- Show that items 2–3 of Lemma 13.5 hold for every norm.
2.(*)Give an example of a norm for which item 1 of Lemma 13.5 does not
hold. - LetR(w) be a function that is (2λ)-strongly convex with respect to some
norm‖·‖. LetAbe an RLM rule with respect toR, namely,
A(S) = argmin
w(LS(w) +R(w)).Assume that for everyz, the loss function`(·,z) isρ-Lipschitz with respect
to the same norm, namely,
∀z,∀w,v, `(w,z)−`(v,z)≤ρ‖w−v‖.Prove thatAis on-average-replace-one-stable with rate^2 ρ2
λm.
4.(*)Letq∈(1,2) and consider the`q-norm‖w‖q=(d
∑i=1|wi|q) 1 /q
.It can be shown (see, for example, Shalev-Shwartz (2007)) that the functionR(w) =1
2(q−1)‖w‖^2 qis 1-strongly convex with respect to‖w‖q. Show that ifq=log(log(d)d−) 1 then
R(w) is(
1
3 log(d))
-strongly convex with respect to the` 1 norm overRd.