380 Rademacher Complexities
lemma26.7 LetA be a subset ofRm and letA′ ={
∑N
j=1αja
(j) :N ∈
N,∀j,a(j)∈A,αj≥ 0 ,‖α‖ 1 = 1}. Then,R(A′) =R(A).
Proof The main idea follows from the fact that for any vectorvwe have
sup
α≥ 0 :‖α‖ 1 =1
∑N
j=1
αjvj = maxj vj.
Therefore,
mR(A′) =Eσ sup
α≥ 0 :‖α‖ 1 =1
sup
a(1),...,a(N)
∑m
i=1
σi
∑N
j=1
αja(ij)
=Eσ sup
α≥ 0 :‖α‖ 1 =1
∑N
j=1
αjsup
a(j)
∑m
i=1
σia(ij)
=Eσsup
a∈A
∑m
i=1
σiai
=mR(A),
and we conclude our proof.
The next lemma, due to Massart, states that the Rademacher complexity of
a finite set grows logarithmically with the size of the set.
lemma26.8 (Massart lemma) LetA={a 1 ,...,aN}be a finite set of vectors
inRm. Define ̄a=N^1
∑N
i=1ai. Then,
R(A) ≤ max
a∈A
‖a−a ̄‖
√
2 log(N)
m
.
Proof Based on Lemma 26.6, we can assume without loss of generality that
̄a= 0. Letλ >0 and letA′={λa 1 ,...,λaN}. We upper bound the Rademacher
complexity as follows:
mR(A′) =Eσ
[
max
a∈A′
〈σ,a〉
]
= Eσ
[
log
(
max
a∈A′
e〈σ,a〉
)]
≤Eσ
[
log
(
∑
a∈A′
e〈σ,a〉
)]
≤log
(
Eσ
[
∑
a∈A′
e〈σ,a〉
])
// Jensen’s inequality
= log
(
∑
a∈A′
∏m
i=1
Eσ
i
[eσiai]
)
,
where the last equality occurs because the Rademacher variables are indepen-
dent. Next, using Lemma A.6 we have that for allai∈R,
σE
i
eσiai=
exp(ai) + exp(−ai)
2
≤exp(a^2 i/2),