B.4 Hoeffding’s Inequality 425and,E[e−tZ] =E[e−t∑
iZi] =E[∏
ie−tZi]=
∏
iE[e−tZi] by independence=
∏
i(
1 +pi(e−t−1))
≤
∏
iepi(e−t−1)
using 1 +x≤ex=e(e−t−1)p
.Settingt=−log(1−δ) yieldsP[Z <(1−δ)p] ≤ e−δp
e(1−δ) log(1−δ)p=e−ph(−δ).It is easy to verify thath(−δ)≥h(δ) and hencelemmaB.5 Using the notation of Lemma B.3 we also haveP[Z <(1−δ)p] ≤ e−ph(−δ)≤e−ph(δ)≤e−p
2+2δ^2 δ/ 3
.B.4 Hoeffding’s Inequality
lemma B.6 (Hoeffding’s inequality) LetZ 1 ,...,Zm be a sequence of i.i.d.
random variables and letZ ̄=m^1∑m
i=1Zi. Assume thatE[Z ̄] =μandP[a≤
Zi≤b] = 1for everyi. Then, for any > 0P
[∣∣
∣∣
∣
1
m∑mi=1Zi−μ∣∣
∣∣
∣
>
]
≤ 2 exp(
− 2 m^2 /(b−a)^2)
.
Proof DenoteXi=Zi−E[Zi] andX ̄=m^1∑
iXi. Using the monotonicity of
the exponent function and Markov’s inequality, we have that for everyλ > 0
and >0,
P[X ̄≥] =P[eλX ̄≥eλ]≤e−λE[eλX ̄].Using the independence assumption we also haveE[eλX ̄] =E[
∏
ieλXi/m]
=
∏
iE[eλXi/m].By Hoeffding’s lemma (Lemma B.7 later), for everyiwe haveE[eλXi/m]≤eλ^2 (b−a)^2
8 m^2.