Understanding Machine Learning: From Theory to Algorithms

(Jeff_L) #1

432 Linear Algebra


lemmaC.3 LetA∈Rm,nbe a matrix of rankr. Assume thatv 1 ,...,vris an
orthonormal set of right singular vectors ofA,u 1 ,...,uris an orthonormal set
of corresponding left singular vectors ofA, andσ 1 ,...,σrare the corresponding
singular values. Then,

A=

∑r

i=1

σiuiv>i.

It follows that ifUis a matrix whose columns are theui’s,Vis a matrix whose
columns are thevi’s, andDis a diagonal matrix withDi,i=σi, then
A=UDV>.

Proof Any right singular vector ofAmust be in the range ofA>(otherwise,
the singular value will have to be zero). Therefore,v 1 ,...,vris an orthonormal
basis of the range ofA. Let us complete it to an orthonormal basis ofRnby
adding the vectorsvr+1,...,vn. DefineB=

∑r
i=1σiuiv

>i. It suffices to prove
that for alli,Avi=Bvi. Clearly, ifi > rthenAvi= 0 andBvi= 0 as well.
Fori≤rwe have

Bvi=

∑r

j=1

σjujv>jvi=σiui=Avi,

where the last equality follows from the definition.

The next lemma relates the singular values ofAto the eigenvalues ofA>A
andAA>.
lemmaC.4 v,uare right and left singular vectors ofAwith singular valueσ
iffvis an eigenvector ofA>Awith corresponding eigenvalueσ^2 andu=σ−^1 Av
is an eigenvector ofAA>with corresponding eigenvalueσ^2.

Proof Suppose thatσis a singular value ofAwithv∈Rnbeing the corre-
sponding right singular vector. Then,
A>Av=σA>u=σ^2 v.

Similarly,
AA>u=σAv=σ^2 u.

For the other direction, ifλ 6 = 0 is an eigenvalue ofA>A, withvbeing the
corresponding eigenvector, thenλ >0 becauseA>Ais positive semidefinite. Let
σ=


λ,u=σ−^1 Av. Then,

σu=


λ

A√v
λ

=Av,

and
A>u=

1

σA

>Av=λ
σv=σv.
Free download pdf