112 Multivariate Distributionsand
f 2 (x 2 )={∫x 2
0 2 dx^1 =2x^20 <x^2 <^1
0elsewhere.The conditional pdf ofX 1 ,givenX 2 =x 2 , 0 <x 2 <1, is
f 1 | 2 (x 1 |x 2 )={ 2
2 x 2 =1
x 2 0 <x^1 <x^2 <^1
0elsewhere.Here the conditional mean and the conditional variance ofX 1 ,givenX 2 =x 2 ,are
respectively,
E(X 1 |x 2 )=∫∞−∞x 1 f 1 | 2 (x 1 |x 2 )dx 1=∫x 20x 1(
1
x 2)
dx 1=x 2
2, 0 <x 2 < 1 ,andVar(X 1 |x 2 )=∫x 20(
x 1 −x 2
2) 2 ( 1
x 2)
dx 1=x^22
12, 0 <x 2 < 1.Finally, we compare the values ofP(0<X 1 <^12 |X 2 =^34 )andP(0<X 1 <^12 ).We have
P(0<X 1 <^12 |X 2 =^34 )=∫ 1 / 20f 1 | 2 (x 1 |^34 )dx 1 =∫ 1 / 20(^43 )dx 1 =^23 ,but
P(0<X 1 <^12 )=∫ 1 / 2
0 f^1 (x^1 )dx^1 =∫ 1 / 2
0 2(1−x^1 )dx^1 =3
4.
SinceE(X 2 |x 1 ) is a function ofx 1 ,thenE(X 2 |X 1 ) is a random variable with its
own distribution, mean, and variance. Let us consider the following illustration of
this.Example 2.3.2.LetX 1 andX 2 have the joint pdff(x 1 ,x 2 )={
6 x 2 0 <x 2 <x 1 < 1
0elsewhere.Then the marginal pdf ofX 1 isf 1 (x 1 )=∫x 106 x 2 dx 2 =3x^21 , 0 <x 1 < 1 ,