2.5. The Correlation Coefficient 129
by changing integrals to sums. LetE(Y|x)=a+bx.From
E(Y|x)=
∫∞
−∞
yf(x, y)dy
f 1 (x)
=a+bx,
we have ∫∞
−∞
yf(x, y)dy=(a+bx)f 1 (x). (2.5.6)
If both members of Equation (2.5.6) are integrated onx, it is seen that
E(Y)=a+bE(X)
or
μ 2 =a+bμ 1 , (2.5.7)
whereμ 1 =E(X)andμ 2 =E(Y). If both members of Equation (2.5.6) are first
multiplied byxandthenintegratedonx,wehave
E(XY)=aE(X)+bE(X^2 ),
or
ρσ 1 σ 2 +μ 1 μ 2 =aμ 1 +b(σ 12 +μ^21 ), (2.5.8)
whereρσ 1 σ 2 is the covariance ofXandY. The simultaneous solution of equations
(2.5.7) and (2.5.8) yields
a=μ 2 −ρ
σ 2
σ 1
μ 1 and b=ρ
σ 2
σ 1
.
These values give the first result (2.5.4).
Next, the conditional variance ofYis given by
Var(Y|x)=
∫∞
−∞
[
y−μ 2 −ρ
σ 2
σ 1
(x−μ 1 )
] 2
f 2 | 1 (y|x)dy
=
∫∞
−∞
[
(y−μ 2 )−ρ
σ 2
σ 1
(x−μ 1 )
] 2
f(x, y)dy
f 1 (x)
. (2.5.9)
This variance is nonnegative and is at most a function ofxalone. If it is multiplied
byf 1 (x) and integrated onx, the result obtained is nonnegative. This result is
∫∞
−∞
∫∞
−∞
[
(y−μ 2 )−ρ
σ 2
σ 1
(x−μ 1 )
] 2
f(x, y)dydx
=
∫∞
−∞
∫∞
−∞
[
(y−μ 2 )^2 − 2 ρ
σ 2
σ 1
(y−μ 2 )(x−μ 1 )+ρ^2
σ^22
σ^21
(x−μ 1 )^2
]
f(x, y)dydx
= E[(Y−μ 2 )^2 ]− 2 ρ
σ 2
σ 1
E[(X−μ 1 )(Y−μ 2 )] +ρ^2
σ 22
σ 12
E[(X−μ 1 )^2 ]
= σ^22 − 2 ρ
σ 2
σ 1
ρσ 1 σ 2 +ρ^2
σ^22
σ^21
σ^21
= σ^22 − 2 ρ^2 σ 22 +ρ^2 σ^22 =σ 22 (1−ρ^2 ),