3.2. The Poisson Distribution 1673.1.29.Let the independent random variablesX 1 andX 2 have binomial distri-
butions with parametersn 1 ,p 1 =^12 andn 2 ,p 2 =^12 , respectively. Show that
Y=X 1 −X 2 +n 2 has a binomial distribution with parametersn=n 1 +n 2 ,p=^12.
3.1.30. Consider a shipment of 1000 items into a factory. Suppose the factory
can tolerate about 5% defective items. LetX be the number of defective items
in a sample without replacement of sizen= 10. Suppose the factory returns the
shipment ifX≥2.
(a)Obtain the probability that the factory returns a shipment of items that has
5% defective items.(b)Suppose the shipment has 10% defective items. Obtain the probability that
the factory returns such a shipment.(c)Obtain approximations to the probabilities in parts (a) and (b) using appro-
priate binomial distributions.Note:If you do not have access to a computer package with a hypergeometric com-
mand, obtain the answer to (c) only. This is what would have been done in practice
20 years ago. If you have access to R, then the commanddhyper(x,D,N-D,n)
returns the probability in expression (3.1.7).
3.1.31.Show that the variance of a hypergeometric (N, D, n) distribution is given
by expression (3.1.8).
Hint:First obtainE[X(X−1)] by proceeding in the same way as the derivation of
the mean given in Section 3.1.3.
3.2 ThePoissonDistribution
Recall that the following series expansion^3 holds for all real numbersz:1+z+
z^2
2!+
z^3
3!+···=∑∞x=0zx
x!=ez.Consider the functionp(x) defined by
p(x)={ λxe−λ
x! x=0,^1 ,^2 ,...
0elsewhere,(3.2.1)whereλ>0. Sinceλ>0, thenp(x)≥0and∑∞x=0p(x)=∑∞x=0λxe−λ
x!=e−λ∑∞x=0λx
x!=e−λeλ=1;(^3) See, for example, the discussion on Taylor series inMathematical Commentsreferenced in the
Preface.