1.2. Sets 9Example 1.2.8.LetCbe the interval of positive real numbers, i.e.,C=(0,∞).
LetAbe a subset ofC. Define the set functionQbyQ(A)=∫Ae−xdx, (1.2.20)provided the integral exists. The reader should work through the following integra-
tions:
Q[(1,3)] =∫ 31e−xdx=−e−x∣
∣
∣
∣31=e−^1 −e−^3 =0 ̇. 318Q[(5,∞)] =∫ 31e−xdx=−e−x∣
∣
∣
∣∞5=e−^5 =0 ̇. 007Q[(1,3)∪[3,5)] =∫ 51e−xdx=∫ 31e−xdx+∫ 53e−xdx=Q[(1,3)] +Q([3,5)]Q(C)=∫∞0e−xdx=1.Our final example, involves anndimensional integral.Example 1.2.9.LetC=Rn.ForAinCdefine the set function
Q(A)=∫
···∫Adx 1 dx 2 ···dxn,provided the integral exists. For example, ifA={(x 1 ,x 2 ,...,xn):0≤x 1 ≤
x 2 , 0 ≤xi≤ 1 ,for 1 = 3, 4 ,...,n}, then upon expressing the multiple integral as
an iterated integral^3 we obtain
Q(A)=∫ 10[∫x 20dx 1]
dx 2 •∏ni=3[∫ 10dxi]=
x^22
2∣
∣
∣
∣10- 1=
1
2
.IfB={(x 1 ,x 2 ,...,xn):0≤x 1 ≤x 2 ≤···≤xn≤ 1 },then
Q(B)=∫ 10[∫xn0···[∫x 30[∫x 20dx 1]
dx 2]
···dxn− 1]
dxn=
1
n!,wheren!=n(n−1)··· 3 · 2 ·1.(^3) For a discussion of multiple integrals in terms of iterated integrals, see Chapter 3 ofMathe-
matical Comments.