Robert_V._Hogg,_Joseph_W._McKean,_Allen_T._Craig

(Jacob Rumans) #1
1.5. Random Variables 43

which is the desired result.

Example 1.5.6.LetXhave the discontinuous cdf

FX(x)=




0 x< 0
x/ 20 ≤x< 1
11 ≤x.

Then


P(− 1 <X≤ 1 /2) =FX(1/2)−FX(−1) =

1
4

−0=

1
4
and


P(X=1)=FX(1)−FX(1−)=1−
1
2

=
1
2

.

The value 1/2 equals the value of the step ofFXatx=1.


Since the total probability associated with a random variableXof the discrete
type with pmfpX(x) or of the continuous type with pdffX(x) is 1, then it must be
true that ∑


x∈DpX(x)=1and


DfX(x)dx=1,
whereDis the space ofX. As the next two examples show, we can use this
property to determine the pmf or pdf if we know the pmf or pdf down to a constant
of proportionality.
Example 1.5.7.SupposeXhas the pmf


pX(x)=

{
cx x=1, 2 ,..., 10
0elsewhere,

for an appropriate constantc.Then

1=

∑^10

x=1

pX(x)=

∑^10

x=1

cx=c(1 + 2 +···+ 10) = 55c,

and, hence,c=1/55.
Example 1.5.8.SupposeXhas the pdf

fX(x)=

{
cx^30 <x< 2
0elsewhere,

for a constantc.Then


1=

∫ 2

0

cx^3 dx=c

[
x^4
4

] 2

0

=4c,

and, hence,c=1/4. For illustration of the computation of a probability involving
X,wehave


P

(
1
4

<X< 1

)
=

∫ 1

1 / 4

x^3
4

dx=

255
4096

=0. 06226.
Free download pdf