1.5. Random Variables 43which is the desired result.Example 1.5.6.LetXhave the discontinuous cdfFX(x)=⎧
⎨
⎩0 x< 0
x/ 20 ≤x< 1
11 ≤x.Then
P(− 1 <X≤ 1 /2) =FX(1/2)−FX(−1) =1
4−0=1
4
and
P(X=1)=FX(1)−FX(1−)=1−
1
2=
1
2.The value 1/2 equals the value of the step ofFXatx=1.
Since the total probability associated with a random variableXof the discrete
type with pmfpX(x) or of the continuous type with pdffX(x) is 1, then it must be
true that ∑
x∈DpX(x)=1and∫
DfX(x)dx=1,
whereDis the space ofX. As the next two examples show, we can use this
property to determine the pmf or pdf if we know the pmf or pdf down to a constant
of proportionality.
Example 1.5.7.SupposeXhas the pmf
pX(x)={
cx x=1, 2 ,..., 10
0elsewhere,for an appropriate constantc.Then1=∑^10x=1pX(x)=∑^10x=1cx=c(1 + 2 +···+ 10) = 55c,and, hence,c=1/55.
Example 1.5.8.SupposeXhas the pdffX(x)={
cx^30 <x< 2
0elsewhere,for a constantc.Then
1=∫ 20cx^3 dx=c[
x^4
4] 20=4c,and, hence,c=1/4. For illustration of the computation of a probability involving
X,wehave
P(
1
4<X< 1)
=∫ 11 / 4x^3
4dx=255
4096=0. 06226.