Answers to Selected Exercises 7297.6.3(a) 0.8413; (b) 0.7702 (c) Our run
0.0584.
7.6.4(a) 49.4; (b) Our run: 4.4057.6.6(a)(n− 1
n)Y(
1+nY− 1)
;(b)(n− 1
n)nX(
1+nn−X 1)
;
(c)N(
θ,θn)
.7.6.9 1 −e−^2 /X;1−(
1 −^2 /nX)n− 1
.7.6.10(b)X;(c)X;(d)1/X.7.7.3Yes.7.7.5(a)Γ[(Γ[n−n/1)2]/2]√
n− 1
2 S.
(b) Downloadbootse6.R
10.1837; Our run: 1.1568287.7.6(b)Y^1 + 2 Yn;(n+1)(2(nY−n1)−Y^1 ).7.7.7(a)K =(Γ((n−1)/2)/Γ(n/2))
×
√
((n−1)/2)
mvue = Φ−^1 (p)KS+x
(c) 59.727; Our run 3.291479.7.7.9(a)n−^11
∑n
h=1(Xih−Xi)
×(Xjh−Xj);
(b)∑n
i=1aiXi.7.7.10
(∑
n
i=1xi,∑n
i=11
xi)
.7.8.3Y 1 ,;∑n
i=1(Yi−Y^1 )/n.7.9.13(a) Γ(3n, 1 /θ),no;
(c) (3n−1)/Y;
(e) Beta(3, 3 n−3).
Chapter 8
8.1.4
∑ 10
i=1x2
i≥^18 .3; yes; yes.
8.1.5∏n
i=1xi≥c.8.1.6 3∑ 10
i=1x2
i+2∑ 10
i=1xi≥c.8.1.7About 96; 76. 7.
8.1.8
∏n
i=1[xi(1−xi)]≥c.8.1.9About 39; 15.
8.1.10 0 .08; 0. 875.8.2.1(1−θ)^9 (1 + 9θ).8.2.2 1 − 1615 θ 4 , 1 <θ.8.2.3 1 −Φ( 3 − 5 θ
2)
.8.2.4About 54; 5. 6.
8.2.7RejectH 0 ifx≥ 77. 564.
8.2.8About 27; rejectH 0 ifx≤ 24.8.2.10Γ(n, θ);
RejectH 0 if∑n
i=1xi≥c.
8.2.12(b) 326 ;(c) 321.
(d) reject ify=0;
ify= 1, reject with probability^15.8.3.1(b)t=− 2. 2854 ,p=0.02393;
(c) (− 0. 5396 − 0 .0388).
8.3.5(d)n= 90.
8.3.678; 0.7608.
8.3.10UnderH 1 ,(θ 4 /θ 3 )Fhas
anF(n− 1 ,m−1) distribution.8.3.12RejectH 0 if|y 3 −θ 0 |≥c.8.3.14(a)∏n
i=1(1−xi)≥c.
8.3.17(b)F=1.34;p=0.088.
8.4.1 5. 84 n− 32 .42; 5. 84 n+41. 62.
8.4.2 0. 04 n− 1 .66; 0. 04 n+1. 20.
8.4.4 0. 025 , 29. 7 ,− 29. 7.
8.5.5(9y− 20 x)/ 30 ≤c⇒(x, y)∈2nd.8.5.7 2 w^21 +8w^22 ≥c⇒(w 1 ,w 2 )∈II.Chapter 9
9.2.3 6. 39.
9.2.6(b)F=1.1433,p=0. 3451.
9.2.7 7. 875 > 4 .26; rejectH 0.
9.2.8 10. 224 > 4 .26; rejectH 0.