reSeArcH Article
(1) RINSE (removal of incubated nanotubes through selective exfo-
liation). We propose a method of removing CNT aggregate defects
through a selective mechanical exfoliation process. RINSE reduces CNT
aggregate defect density by > 250 × without affecting non-aggregated
CNTs or degrading CNFET performance.
(2) MIXED (metal interface engineering crossed with electrostatic
doping). Our combined CNT doping process leverages both metal con-
tact work function engineering as well as electrostatic doping to realize
a robust wafer-scale CNFET CMOS process. We experimentally yield
entire dies with >10,000 CNFET CMOS digital logic gates (2-inputSourceDrainuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuouououuuuuououuuuuouuououououououououuouououuuouououooooooooooooooooooooooooooooooooooooooo
oooooooSoSoooooooooooooooooooooooooooooooooSoooooooooooooooooooooooSooSooooooSooooSSSSSSSeeecceeeeeeeceeeeececeeeeeeeceeeeeeeeeeeceeceeeeeeeeeeceeceeeeeeeeeeceeeceeceeeeeeeeceeceeeeceeeeceeeeeeeceeeceeeeeceeeeeeecececeeeeeeeeeeeeeeeeeeeeeececccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
crccccccccccccccccccrcrcccccccrcrcrcrccrcrcrcrcrcrcr
DraDDDDDDinnni~7 mm~7 mm Metal layer 1
(signal routing)Metal layer 2
(CNFET gate +
signal routing)Metal layer 3
(p-CNFET S/D +
intercell routing)Metal layer 4
(n-CNFET S/D)Metal layer 5
(power distribution)Metal viaMetal viaMetal viaCNTCNFETsC100 μm 40 μm 20 μm 1 μmCNTs
2abFig. 1 | RV16X-NANO. a, Image of a fabricated RV16X-NANO chip. The
die area is 6.912 mm × 6.912 mm, with input/output pads placed around
the periphery. Scanning electron microscopy images with increasing
magnification are shown below (one image is false-coloured to match the
colouring in the schematic in b). RV16X-NANO is fabricated entirely from
CNFET CMOS, in a wafer-scalable, VLSI-compatible, and silicon-CMOS
compatible fashion. b, Three-dimensional to-scale rendered schematic
of the RV16X-NANO physical layout (all dimensions are to scale except
for the z axis, which is magnified to clarify each individual vertical
layer). RV16X-NANO leverages a new three-dimensional (3D) physical
architecture in which the CNFETs are physically located in the middle of
the stack, with metal routing both above and below.Inputs OutputsLPP>@XVHV5G
VHQGV0HP5HTJHWV0HP5HVS2323,00$8,3&/8,-$/-$/5/2$'
GHIDXOW
RSFRGH /2$'6725(GHIDXOW
RSFRGH/2$'
GHIDXOW
RSFRGH23,00/2$'
-$/5
$8,3&/8,
%5$1&+
-$/
6725(GHIDXOW
RSFRGH,LPPHGLDWVH[WLQVW>@H `
8LPPHGLDWLQVW>@H
%LPPHGLDWVH[W^LQVW>@LQVW>@H
LQVW>@LQVW>@`
-LPPHGLDW^LQVW>@LQVW>@H
LQVW>@`
6LPPHGLDWVH[W^LQVW>@H
LQVW>@`LQVW>@>@Inputs Outputs
FON
UHDG$GGU>@
UHDG$GGU>@ZULWHBHQZULWH$GGU>@
ZULWH'DWD>@UHDG'DWD>@
UHDG'DWD>@G>@T>@
5HQG>@T>@
5HQG>@T>@
5HQUHDG$GGU
UHDG$GGUFONDGGUHVVBGHFRGHUFONFONFKDUBRXW>@PHPBUHT>@
PHPBUHT>@PHPBDGGU [IRSFRGH 6725(VWDWH (;(&87(
E
(;(&87(
/2$'B),1,6+,167B)(7&+
VWDWH
VHQGV0HP5HT
^
ESFPHPBZULWHBGDWD>@`^
EQH[WBSFPHPBZULWHBGDWD>@`^PHPBZULWHBHQPHPBDGGU>@PHPBZULWHBGDWD`PHPBZULWHBGDWD>@` FKDUBRXW>@G>@ T>@
SFHQ
FONUVWBQ
VWDWH (;(&87(G>@ T>@
UVWBQ FON VWDWH
(;(&87(
VWDWH (;(&87(
(;(&87(
VHQGV0HP5HT
,167B)(7&+
JHWV0HP5HVS/2$'B),1,6+FONUVWBQ (1BPHPBUHVS(1BSURFBHQSURFBHQB[
QH[WBSFInputsOutputsInputsSF>@U9DO>@
U9DO>@
LPP>@PHPBZULWHBHQ>@PHPBDGGU>@
PHPBZULWHBGDWD>@
UG>@^^U9DO``
UG/2$' Outputs
GHIDXOW
E
RSFRGH
ED>E>@@
E
FLQDGG>@
DGG
D>E>@@RURU>@2323,00/2$'6725(
-$/5
-$/%5$1&+$8,3&
GHIDXOWU9DO
SF
RSFRGHLPPGHIDXOW
RSFRGH
aU9DOU9DO
LVBVLJQHG23
D>@
E>@[RU>@
[RU
D>@
E>@DQG>@
DQG
D>@
VKDPW>@
LVBVLJQHGVKLIWBULJKVU>@WD>E>@@HT HT
D>@
E>@OWX OWX
OW65
U9DO>@GHIDXOWU9DO>@
IXQFW LVBVLJQHGU9DO23%5$1&+
LPP23,00GHIDXOWU9DO
RSFRGH>@SF>@SF3OXV>@LQFBSFDGG>@
%(4
%1(
%/78
%*(8
%/7
%*(GR%UDQFK>@
>@
^
EOWX`
^
EOW`$''
25
;25
$1'
65
6//
6/78
6/7
IXQFWDGG>@UHJBZULWHBGDWD>@$8,3&
/8,
-$/-$/5
2323,00/2$'6725(
%5$1&+GHIDXOWSF3OXVLPPRSFRGH
QH[WBSF>@ZULWH3&LPPWRUG
ZULWHLPWRUGP%5$1&+
-$/-$/5
2323,00/2$'6725(
/8,$8,3&GHIDXOWDGGUHVVIRFRQGLWLRQDUO
EUDQFK[IIIH
LQVW>@× RSFRGHLQVW>@
× LVBVLJQHGLQVW>@
× IXQFWLQVW>@
× UGLQVW>@ XQFRQGLWLRQDOMXPSIL[HGDGGUHVVIRU
QH[WDGGUHVVIRUQRQMXPSInstruction fetchWrite-backRegister
readInstruction decodeExecute +
memory
accessPCInstruction
fetchInstruction
decodeRegister
readExecute +
memory accessWrite-backALUMUXDecodeRegister
leStateRotate
loadADDRMUXinstropnext pcSingle memory portRDabFig. 2 | Architecture and design of RV16X-NANO. a, Block diagram
showing the organization of RV16X-NANO, including the instruction
fetch, instruction decode, register read, execute + memory access, and
write-back stages. See Supplementary Information section ‘RISC-V:
Operational Details’ for definitions of terms. b, Schematics describing the
high-level register transfer level (RTL) description of each stage, including
inputs, outputs and signal connections. Additional information on the
RV16X-NANO is in the Supplementary Information.596 | NAtUre | VOl 572 | 29 AUGUSt 2019