ClassicTrainsMag.com 63
A
t^
Sp
ar
ta
n
bu
rg
,^ S
.C
.,^
th
e^
S
ou
th
er
n
R
ai
lw
ay
’s
d
ou
bl
e-
tra
ck
W
as
hi
ng
to
n–
At
la
nt
a^
m
ai
n^
lin
e^
lo
ng
v
ex
ed
in
te
rc
ha
ng
e^
be
tw
ee
n^
th
e^
Cl
in
ch
fie
ld
R
ai
lro
ad
a
nd
it
s^ e
nd
- to
- e
nd
c
on
ne
c-
tio
ns
w
ith
it
s^
pa
re
nt
A
tla
nt
ic
C
oa
st
L
in
e^
(in
th
e^
fo
rm
o
f^ A
CL
’s^
Ch
ar
le
st
on
&
W
es
te
rn
C
ar
ol
in
a^
su
bs
id
ia
ry
th
at
w
as
fi
na
lly
m
er
ge
d^
in
to
A
CL
in
19
59
)^ a
nd
w
ith
th
e^
So
ut
h^
Ca
ro
lin
a^
Di
vi
si
on
o
f^ t
he
Pi
ed
m
on
t^ &
N
or
th
er
n.
T
he
c
on
ne
ct
io
n^
w
as
m
ad
e^
by
c
ro
ss
ov
er
s^
in
th
e^
So
ut
he
rn
’s^
bu
sy
m
ai
ns
,^ w
ith
lo
ng
d
el
ay
s^
to
in
te
rc
ha
ng
e^
m
ov
es
.^
In
19
63
,^ a
tu
nn
el
a
nd
d
ee
pl
y-
ex
ca
va
te
d^
ap
-
pr
oa
ch
es
e
lim
in
at
ed
th
is
c
on
fli
ct
.^
1
So
ut
he
rn
R
ai
lw
ay
s
ta
tio
n
Th
is^
ha
d^
be
en
a
jo
in
t^ s
ta
tio
n^
w
ith
C
RR
a
nd
C&
W
C,
b
ut
b
ot
h^
th
os
e^
ro
ad
s^
ha
d^
en
de
d^
pa
ss
en
-
ge
r^ s
er
vi
ce
a
t^ S
pa
rta
nb
ur
g^
by
19
66
,^ C
lin
ch
fie
ld
in
M
ar
ch
19
55
a
nd
C
&
W
C^
in
F
eb
ru
ar
y^
19
32
(m
ixe
d^
tra
in
s
er
vi
ce
a
fte
r^ t
ha
t^ d
id
n’
t^ u
se
th
e^
st
a-
tio
n)
.^ S
pa
rta
nb
ur
g’
s^
fo
ur
th
ra
ilr
oa
d,
th
e^
Pi
ed
-
m
on
t^ &
N
or
th
er
n,
a
s^
an
e
le
ct
ric
in
te
ru
rb
an
,^
di
dn
’t^
us
e^
th
e^
st
ea
m
- ro
ad
s
ta
tio
n.
2
E
ar
th
en
w
al
l^ o
f^ c
ut
No
te
th
e^
st
ee
p^
an
gl
e^
of
re
po
se
o
f^ t
he
c
ut
w
al
l.^
Ci
vi
l^ e
ng
in
ee
rs
d
ec
id
e^
ba
se
d^
on
s
oi
l^ c
ha
ra
ct
er
-
is
tic
s^ w
he
th
er
a
c
ut
w
ill
w
ith
st
an
d^
an
a
ng
le
th
is
st
ee
p^
or
w
he
th
er
th
ey
m
us
t^ u
se
a
re
ta
in
in
g^
w
al
l.^
M
od
er
n^
pr
ac
tic
e^
w
ou
ld
b
e^
to
s
ee
d^
su
ch
a
s
lo
pe
w
ith
p
la
nt
s^
ha
vi
ng
g
oo
d^
ch
ar
ac
te
ris
tic
s^
fo
r^
ho
ld
in
g^
so
il^
in
p
la
ce
(s
ee
it
em
s^
9
an
d^
12
).
3
P
ie
dm
on
t^ &
N
or
th
er
n^
co
nn
ec
ti
on
Th
er
e^
w
as
a
w
ye
c
on
ne
ct
io
n^
be
tw
ee
n^
th
e^
AC
L^
an
d^
P&
N^
ro
ut
es
,^ a
nd
th
is
p
ow
er
h
ad
ju
st
d
el
iv
-
er
ed
to
th
e^
C&
W
C^
an
d^
th
en
to
ok
th
e^
P&
N^
po
r-
tio
n^
of
th
ei
r^ c
ut
th
ro
ug
h^
th
at
w
ye
a
nd
s
ho
ve
d^
it^
in
to
th
e^
P&
N^
ya
rd
.^ T
he
se
s
ho
rt^
in
te
rc
ha
ng
e^
m
ov
es
w
er
e^
m
ad
e^
w
ith
ou
t^ a
c
ab
oo
se
.^ T
hi
s^
tra
ck
ag
e^
w
as
b
ui
lt^
an
d^
ow
ne
d^
by
th
e^
Sp
ar
ta
n-
bu
rg
Te
rm
in
al
C
o.
,^ in
co
rp
or
at
ed
b
y^
th
e^
AC
L^
fa
m
i-
ly
li
ne
s^
in
19
54
fo
r^ t
he
p
ur
po
se
o
f^ b
ui
ld
in
g^
th
e^
tu
nn
el
.^ T
he
te
rm
in
al
c
om
pa
ny
w
as
th
en
m
er
ge
d^
in
to
A
CL
.^ P
&
N’
s^
So
ut
h^
Ca
ro
lin
a^
Di
vi
sio
n^
or
ig
in
at
-
ed
m
uc
h^
te
xt
ile
tr
aff
ic
th
at
w
ou
ld
b
e^
ro
ut
ed
no
rth
o
n^
th
e^
CR
R.
D
ie
se
liz
ed
in
19
54
,^ P
&
N^
w
ou
ld
by
19
63
b
e^
ab
le
to
m
ak
e^
its
d
el
iv
er
ie
s^
in
to
C
RR
’s^
ya
rd
,^ w
he
re
as
th
at
w
ou
ld
n
ot
h
av
e^
be
en
p
ra
ct
i-
ca
l^ w
he
n^
P&
N^
ha
d^
on
ly
e
le
ct
ric
lo
co
m
ot
iv
es
.^
Th
e^
no
rm
al
p
ra
ct
ic
e^
be
fo
re
U
.S
.^ r
ai
l^ l
ab
or
a
gr
ee
-
m
en
ts
c
ha
ng
ed
in
19
72
w
as
th
at
ra
ilr
oa
ds
d
el
iv
-
er
ed
in
te
rc
ha
ng
e^
ca
rs
to
e
ac
h^
ot
he
r^ a
nd
re
-
tu
rn
ed
li
gh
t.^
Th
e^
sa
m
e^
19
72
a
gr
ee
m
en
ts
a
llo
w
ed
ro
ad
c
re
w
s^
to
g
o^
rig
ht
th
ro
ug
h^
to
a
c
on
ne
ct
io
n^
if^
th
ei
r^ t
ra
in
w
as
b
lo
ck
ed
to
a
llo
w
it
,^ b
ut
in
19
66
in
te
rc
ha
ng
e^
w
as
d
on
e^
by
a
C
RR
ya
rd
c
re
w
a
nd
in
th
is
c
as
e^
us
in
g^
ro
ad
p
ow
er
,^ w
hi
ch
ra
ilr
oa
ds
of
te
n^
di
d^
if^
th
e^
in
te
rc
ha
ng
e^
cu
t^ w
as
h
ea
vy
.^
4
A
tla
nt
ic
C
oa
st
L
in
e^
co
nn
ec
tio
n^
Fo
rm
er
ly
C
ha
rle
st
on
&
W
es
te
rn
C
ar
ol
in
a.
5
C
lin
ch
fie
ld
F
9 A
r^ N
o.
8
04
Bu
ilt
a
s^
an
F
3 A
in
D
ec
em
be
r^1
94
8
(u
no
ffi
ci
al
ly
an
“F
5 A
,”^
sin
ce
F
3 s
d
el
iv
er
ed
th
ro
ug
h^
m
os
t^ o
f^
19
48
h
ad
w
ha
t^ w
ou
ld
b
ec
om
e^
F^7
e
le
ct
ric
al
eq
ui
pm
en
t^ a
nd
a
c
ar
bo
dy
th
at
lo
ok
ed
li
ke
w
ha
t^
w
ou
ld
b
ec
om
e^
th
e^
F^7
b
od
y,^
in
cl
ud
in
g^
th
e^
st
ai
n-
le
ss
- s
te
el
fi
lte
r^ g
ril
le
s^
be
lo
w
th
e^
ea
ve
s;
th
e^
F^7
w
as
o
ffi
ci
al
ly
in
tro
du
ce
d^
in
F
eb
ru
ar
y^
19
49
).^
Th
e^
F^3
- to
- F
9
up
gr
ad
e^
of
N
o.^
80
4
w
as
d
on
e^
by
E
M
D^
an
d^
in
cl
ud
ed
th
e^
ch
ar
ac
te
ris
tic
F
9
sid
e^
pa
ne
l^
w
ith
a
lo
uv
er
a
he
ad
o
f^ t
he
fi
rs
t^ p
or
th
ol
e,^
as
se
en
he
re
,^ c
ov
er
in
g^
an
a
dd
iti
on
al
a
ir^
fil
te
r.
6
H
an
co
ck
a
ir
w
hi
st
le
Th
is
d
es
ig
n^
—
a
s
in
gl
e^
w
hi
st
le
e
le
m
en
t^ p
ro
je
ct
-
in
g^
ho
riz
on
ta
lly
fo
rw
ar
d^
fro
m
a
s
qu
ar
e^
re
fle
ct
or
—
w
as
a
n^
al
te
rn
at
iv
e^
to
th
e^
us
ua
l^ a
ir^
ho
rn
.^ T
hi
s^
pr
od
uc
ed
a
m
or
e^
pl
ea
sin
g^
so
un
d^
th
an
a
c
hi
m
e^
ai
r^ h
or
n,
b
ut
H
an
co
ck
a
ir^
w
hi
st
le
s^
w
er
e^
no
t^
w
id
el
y^
us
ed
b
ec
au
se
o
f^ c
on
ce
rn
s^
th
at
th
ey
co
ul
d^
no
t^ b
e^
he
ar
d^
as
re
ad
ily
a
s^
an
a
ir^
ho
rn
.
7
F
3 B
,^ F
7 B
,^ o
r^ F
9 B
Th
is
c
ou
ld
b
e^
on
e^
of
th
re
e^
m
od
el
s,^
as
a
ll^
th
re
e^
ha
d^
th
e^
sa
m
e^
th
re
e-
po
rt
ho
le
s
id
e^
pa
ne
ls
.^ C
RR
ha
d^
5
F^3
As
,^1
5
F^7
As
,^3
F
3 B
s,
11
F
7 B
s,^
an
d^
5
as
-
bu
ilt
F
9 B
s,^
al
on
g^
w
ith
it
s^
so
le
p
as
se
ng
er
d
ie
se
l,^
FP
7 A
2
00
.^ T
hi
s^
fiv
e-
un
it^
co
ns
is
t^ r
ep
re
se
nt
ed
on
e-
ei
gh
th
o
f^ C
RR
’s^
en
tir
e^
fre
ig
ht
F
- u
ni
t^ f
le
et
.
8
F
9 A
r^ N
o.
8
06
Bu
ilt
a
s^
an
F
7 A
in
O
ct
ob
er
19
51
,^ i
t^ w
as
re
bu
ilt
to
F^9
s
pe
cs
in
N
ov
em
be
r^1
95
5
af
te
r^ a
w
re
ck
.^ T
hi
s^
co
ns
is
t^ h
ap
pe
ns
to
in
cl
ud
e^
CR
R’
s^
on
ly
tw
o^
F^9
Ar
’s.
9
C
on
cr
et
e^
re
ta
in
in
g^
w
al
l
Us
ed
w
he
n^
th
e^
re
su
lti
ng
sl
op
e^
of
a
c
ut
w
ou
ld
b
e^
to
o^
st
ee
p^
to
b
e^
fo
rm
ed
o
f^ e
ar
th
.
10
T
un
ne
l^ p
or
ta
l
Th
e^
tu
nn
el
is
a
pp
ro
xi
m
at
el
y^
70
0
fe
et
lo
ng
a
nd
pa
ss
es
u
nd
er
M
ag
no
lia
a
nd
C
hu
rc
h^
st
re
et
s^
in
ad
di
tio
n^
to
th
e^
So
ut
he
rn
tr
ac
ks
.^ T
he
c
ro
ss
s
ec
-
tio
n^
of
th
e^
tu
nn
el
b
ei
ng
b
ro
ad
er
a
t^ t
he
b
as
e^
th
an
a
t^ t
he
ta
ng
en
t^ p
oi
nt
s^
of
th
e^
ar
ch
is
u
nu
su
al
be
ca
us
e^
ra
ilr
oa
d^
tu
nn
el
c
le
ar
an
ce
s^
ar
e^
us
ua
lly
co
ns
tra
in
ed
b
y^
th
e^
to
p^
co
rn
er
s.
In
th
is
c
as
e^
th
e^
de
sig
ni
ng
e
ng
in
ee
r^ p
ro
ba
bl
y^ u
se
d^
th
e^
an
gl
e^
of
th
e^
w
al
ls
to
c
re
at
e^
bu
ttr
es
se
s^ f
or
th
e^
to
p^
ar
ch
,^ t
o^
ca
rr
y^
th
e^
w
ei
gh
t^ a
bo
ve
.^
11
C
on
cr
et
e^
tu
nn
el
a
bu
tm
en
t
Th
is
is
a
s
pe
ci
al
fo
rm
o
f^ r
et
ai
ni
ng
w
al
l^ u
se
d^
to
ho
ld
b
ac
k^
m
at
er
ia
l^ a
t^ t
he
tu
nn
el
e
nt
ra
nc
e.^
Br
id
g-
es
a
lso
o
fte
n^
ha
ve
a
bu
tm
en
ts
,^ w
hi
ch
a
re
si
tu
at
-
ed
b
el
ow
th
e^
en
ds
o
f^ t
he
s
pa
n^
an
d^
su
pp
or
t^ t
he
sp
an
in
a
dd
iti
on
to
h
ol
di
ng
b
ac
k^
m
at
er
ia
l^ i
n^
th
e^
br
id
ge
“d
um
p”,
th
e^
fil
l^ w
hi
ch
c
on
st
itu
te
s^
th
e^
br
id
ge
a
pp
ro
ac
h.
12
D
ra
in
ag
e^
di
tc
h
In
th
e^
th
re
e^
ye
ar
s^
sin
ce
th
e^
tu
nn
el
’s^
co
ns
tru
c-
tio
n,
th
e^
di
tc
h^
ha
s^
st
ar
te
d^
to
fi
ll^
w
ith
m
at
er
ia
l^
w
as
he
d^
do
w
n^
fro
m
th
e^
w
al
l^ o
f^ t
he
c
ut
.^ R
es
to
r-
in
g^
th
e^
cr
os
s^ s
ec
tio
n^
of
d
ra
in
ag
e^
di
tc
he
s^
is
a
fre
qu
en
t^ r
ai
lro
ad
m
ai
nt
en
an
ce
ta
sk
.^ I
f^ t
hi
s^
is
n
ot
do
ne
,^ w
at
er
p
on
ds
in
p
or
tio
ns
o
f^ t
he
d
itc
h^
an
d^
th
en
in
fil
tra
te
s^
th
e^
su
bg
ra
de
u
nd
er
th
e^
tra
ck
.^ In
th
is
c
as
e^
w
he
re
w
at
er
fl
ow
s^
do
w
n^
to
th
e^
le
ve
l^ o
f^
th
e^
tu
nn
el
fr
om
b
ot
h^
di
re
ct
io
ns
it
is
u
su
al
ly
n
ec
-
es
sa
ry
to
h
av
e^
su
m
p^
pu
m
ps
,^ w
hi
ch
in
th
is^
ca
se
co
ul
d^
di
sc
ha
rg
e^
in
to
c
ity
s
to
rm
s
ew
er
s.^
Cl
os
e^
co
lla
bo
ra
tio
n^
be
tw
ee
n^
ra
ilr
oa
d^
en
gi
ne
er
s^
an
d^
th
e^
ci
ty
e
ng
in
ee
rs
w
ou
ld
h
av
e^
be
en
n
ee
de
d^
fo
r^
al
l^ a
sp
ec
ts
o
f^ t
he
p
ro
je
ct
,^ a
nd
th
e^
ci
ty
w
ou
ld
ha
ve
w
el
co
m
ed
th
e^
op
po
rt
un
ity
to
g
et
ra
il^
tra
ffi
c^
off
b
us
y^
Ch
ur
ch
S
tre
et
in
p
ar
tic
ul
ar
,^ w
hi
ch
c
ar
-
rie
s^ U
.S
.^ H
ig
hw
ay
2
21
a
nd
S
ta
te
R
ou
te
5
6.
13
H
om
e^
si
gn
al
Th
e^
ab
se
nc
e^
of
a
n
um
be
r^ p
la
te
in
di
ca
te
s^ a
ho
m
e^
sig
na
l.^ I
nt
er
m
ed
ia
te
b
lo
ck
s
ig
na
ls^
us
ua
lly
ha
ve
m
ile
po
st
- b
as
ed
n
um
be
r^ p
la
te
s.^
Th
e^
sa
m
e^
da
y,
A
CL
d
el
iv
er
s^
to
th
e^
Cl
in
ch
fie
ld
w
ith
a
s
ix
- u
ni
t^ c
on
si
st
o
f^ G
ee
ps
a
nd
F
7 s
.^ A
s
us
-
ta
in
ed
g
ra
de
o
f^1
p
er
ce
nt
w
as
re
qu
ire
d^
to
g
et
th
e^
re
lo
ca
te
d^
tr
ac
k^
to
p
as
s^
be
ne
at
h^
th
e^
So
ut
he
rn