Nature - 15.08.2019

(Barré) #1

Letter reSeArCH


A gradual accretion of planetesimals along with the runaway gas accre-
tion may also produce a diluted core^15 ,^28. A relevant issue to be inves-
tigated elsewhere is whether the steep composition gradient needed
to preserve the diluted core can also be established after a series of
planetesimal-accretion events rather after than a single embryo’s giant
impact. Finally, extrasolar gas giant planets could also experience such
giant impacts, which may explain the extremely large bulk metallicities
of some giant exoplanets^29.


Online content
Any methods, additional references, Nature Research reporting summaries,
source data, extended data, supplementary information, acknowledgements, peer
review information; details of author contributions and competing interests; and
statements of data and code availability are available at https://doi.org/10.1038/
s41586-019-1470-2.


Received: 29 September 2018; Accepted: 20 June 2019;
Published online 14 August 2019.


  1. Bolton, S. J. et al. The Juno mission. Space Sci. Rev. 213 , 5–37 (2017).

  2. Folkner, W. M. et al. Jupiter gravity field estimated from the first two Juno orbits.
    Geophys. Res. Lett. 44 , 4694–4700 (2017).

  3. Wahl, S. M. et al. Comparing Jupiter interior structure models to Juno gravity
    measurements and the role of a dilute core. Geophys. Res. Lett. 44 , 4649–4659
    (2017).

  4. Debras, F. & Chabrier, G. New models of Jupiter in the context of Juno and
    Galileo. Astrophys. J. 872 , 100 (2019).

  5. Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of
    solids and gas. Icarus 124 , 62–85 (1996).

  6. Ikoma, M., Nakazawa, K. & Emori, H. Formation of giant planets: dependences
    on core accretion rate and grain opacity. Astrophys. J. 537 , 1013–1025 (2000).

  7. Helled, R. et al. Giant planet formation, evolution, and internal structure.
    Protostars Planets VI, 643 (2014).

  8. Paardekooper, S.-J. & Mellema, G. Planets opening dust gaps in gas disks.
    Astron. Astrophys. 425 , L9–L12 (2004).

  9. Levison, H. F., Thommes, E. & Duncan, M. J. Modeling the formation of giant
    planet cores. i. evaluating key processes. Astron. J. 139 , 1297–1314 (2010).

  10. Bitsch, B. et al. Pebble-isolation mass: scaling law and implications for the
    formation of super-Earths and gas giants. Astron. Astrophys. 612 , A30 (2018).

  11. Guillot, T., Stevenson, D. J., Hubbard, W. B. & Saumon, D. The interior of Jupiter.
    In Jupiter: The Planet, Satellites and Magnetosphere 35–57 (Cambridge Univ.
    Press, 2004).

  12. Wilson, H. F. & Militzer, B. Solubility of water ice in metallic hydrogen:
    consequences for core erosion in gas giant planets. Astrophys. J. 745 , 54
    (2012).

  13. Stevenson, D. J. Structure of the giant planets: evidence for nucleated
    instabilities and post-formational accretion. Lunar Planet. Sci. Conf. 13 ,
    770–771 (1982).

  14. Hori, Y. & Ikoma, M. Gas giant formation with small cores triggered by envelope
    pollution by icy planetesimals. Mon. Not. R. Astron. Soc. 416 , 1419–1429
    (2011).

  15. Lozovsky, M., Helled, R., Rosenberg, E. D. & Bodenheimer, P. Jupiter’s formation
    and its primordial internal structure. Astrophys. J. 836 , 227 (2017).

  16. Guillot, T. The interiors of giant planets: models and outstanding questions.
    Annu. Rev. Earth Planet. Sci. 33 , 493–530 (2005).

  17. Nettelmann, N., Becker, A., Holst, B. & Redmer, R. Jupiter models with improved
    ab initio hydrogen equation of state (H-REOS.2). Astrophys. J. 750 , 52 (2012).

  18. Helled, R. & Guillot, T. Interior models of Saturn: including the uncertainties in
    shape and rotation. Astrophys. J. 767 , 113 (2013).

  19. Li, S.-L., Agnor, C. & Lin, D. N. C. Embryo impacts and gas giant mergers. I.
    Dichotomy of Jupiter and Saturn’s core mass. Astrophys. J. 720 , 1161–1173
    (2010).

  20. Liu, S.-F., Agnor, C. B., Lin, D. N. C. & Li, S.-L. Embryo impacts and gas giant
    mergers—II. Diversity of hot Jupiters’ internal structure. Mon. Not. R. Astron. Soc.
    446 , 1685–1702 (2015).

  21. Kokubo, E. & Ida, S. Oligarchic growth of protoplanets. Icarus 131 , 171–178
    (1998).

  22. Ida, S. & Lin, D. N. C. Toward a deterministic model of planetary formation. I.
    A desert in the mass and semimajor axis distributions of extrasolar planets.
    Astrophys. J. 604 , 388–413 (2004).

  23. Zhou, J.-L. & Lin, D. N. C. Planetesimal accretion onto growing proto-gas giant
    planets. Astrophys. J. 666 , 447–465 (2007).

  24. Ida, S., Lin, D. N. C. & Nagasawa, M. Toward a deterministic model of planetary
    formation. VII. Eccentricity distribution of gas giants. Astrophys. J. 775 , 42
    (2013).

  25. Fryxell, B. et al. FLASH: an adaptive mesh hydrodynamics code for modeling
    astrophysical thermonuclear flashes. Astrophys. J. Suppl. 131 , 273–334 (2000).

  26. Berardo, D. & Cumming, A. Hot-start giant planets form with radiative interiors.
    Astrophys. J. 846 , L17 (2017).

  27. Cumming, A., Helled, R. & Venturini, J. The primordial entropy of Jupiter. Mon.
    Not. R. Astron. Soc. 477 , 4817–4823 (2018).

  28. Helled, R. & Stevenson, D. The fuzziness of giant planets’ cores. Astrophys. J.
    840 , L4 (2017).

  29. Thorngren, D. P. & Fortney, J. J. Bayesian analysis of hot-Jupiter radius
    anomalies: evidence for ohmic dissipation? Astron. J. 155 , 214 (2018).


Publisher’s note: Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

Density (g cm–3)

10
–3
10
–1 101
10
–4
10
–2 100

3,601.0 s 5,204.0 s

6,803.0 s 8,403.0 s

10,008.0 s 108,502.0 s

ab

cd

ef

Fig. 3 | Two-dimensional snapshots of an off-centre collision between
the proto-Jupiter with a 10M⊕ rock/ice core and a 10M⊕ impactor.
a–f, Density contours in the orbital plane before the impact (a); during
disruption and accretion of the impactor (b–e); at about 30  h after the
impact (f). The time shown in each panel is measured since the start of the
simulation. See Methods for detailed discussion.


15 AUGUSt 2019 | VOL 572 | NAtUre | 357
Free download pdf