Mathematics Times – July 2019

(Ben Green) #1
32

DETERMINANTS [ONLINE QUESTIONS]


  1. The number of values of k for which the system of
    linear equations, ( 2) 10k x y k  
    kx k y k ( 3)   1 has no solution, is: [2018]
    (a) 1 (b) 2 (c) 3 (d) 4

  2. If


2

cos 1
( ) 2sin 2
tan 1

x x
f x x x x
x x

 , then lim '( )
x

f x
 x

[2018]
(a) does not exist
(b) exists and is equal to-2
(c) exists and is equal to 0
(d) exists and is equal to 2


  1. If  


0 cos sin
0,2 : sin 0 cos 0 ,
cos sin 0

x x
S x x x
x x


  
   
 
 
 

then tan 3
x S

x



  

   is equal to [2017]


(a) 4 2 3 (b)  2 3
(c)  2 3(d)  4 2 3


  1. Let A be any 3 3 invertible matrix. Then which
    one of the following is not always true? [2017]
    (a) adjA A A. ^1


(b) adj adj A A A.

(c)      
2 1
adj adjA A. adjA



(d)      

1
adj adj A A. adj A




  1. The number of real values of


has infinitely many solutions, is : [2017]
(a) 0 (b) 1 (c) 2 (d) 3


  1. If


 for which the
system of linear equations
2 4x y z   0
4 x y z   2 0
x y z  2 2 0

4 1
,
3 1

A

 
 
 

then the determinant of the

matrix A^2016  2 A A^2015 ^2014  is : [2016]
(a) -175 (b) 2014 (c) 2016 (d) -25


  1. The number of distinct real roots of the equation,


is : [2016]
(a) 4 (b) 1 (c) 2 (d) 3


  1. Let A be a


DETERMINANTS [ONLINE QUESTIONS]
1.

[2018]

2.

[2018]

3.

[2017]

4.
[2017] Statement-I^ :^

cosx sin x sin x
sin x cosx sin x 0
sin x sin x cos x

 in the interval ,
4 4

  
 
  

3 3 matrix such that A A I^2   5 7 0.

(^1)  
(^15).
7
A  I A
Statement-II : The polynomial^3 2 3^2
5.
[2017]
6.
[2016]
7.
[2016]
8.
Statement-I :
Statement-II : A A A I  
can be reduced to 5 4 .A I 
Then :


.

.

.
Free download pdf