CONTINUITY & DIFFERENTIABILITY
[ONLINE QUESTIONS]
- b 2. b 3. c 4. b 5. b
- d 7. a 8. d 9. c 10. b
- d 12. b 13. b 14. c 15. a
- c 17. a 18. b 19. a 20. b
- d 22. b 23. d
CONTINUITY & DIFFERENTIABILITY
[ONLINE QUESTIONS]DETERMINANTS [ONLINE QUESTIONS]
1.Sol: For no solution
2 10
3 1k k
k k k
( 2)( 3) 10k k k
k k^2 5 6 0 k 2,3
k 2 for k 2 both lines identical
so k 3 only
number of values of k is 12.Sol: Given^2
cos 1
( ) 2sin 2
tan 1x x
f x x x x
x xx x x^2 tan cos lim ' lim2 tan cos ^2 (sec sin )^2
x xf x x x x x x x
x x
=limx2 tan cosx x x x (sec sin )^2 x x
=-2
3.Sol: Given
0 cos sin
sin 0 cos 0
cos sin 0x x
x x
x x
i.e., 0 0 sin cos cos 0 cos x x ^2 x
sin sinx x^2 0 0
cos sin^3 x^3 x 0
i.e.,tan 1^3 xNowtan tan
tan^3(^3) 1 tan tan
3
x
x
x
3 1
1 3
3 1 2 3
x s1 3
4.Sol: We know adj adjA A A n^2
Given n 3
i.e.,adj adjA A A - Sol: Given the system of linear equations has
infinitely many solutions.
i.e.,- Sol:
22 4
4 2 0
2 2
^3 20 40 0
has only one root and it lies between 3.05
and 3.
4 1 4 1 4 1
3 1 3 1 3 1A A
13 3
9 2
and A1.Now, A^2016 ^2 A A^2015 ^2014 A A A I^2014 ^2 ^2 A^2016 2 A A^2015 ^2014 A A A I^20142 2 2014 20 5 25
15 5A
7.Sol: GivenDETERMINANTS [ONLINE QUESTIONS]
1.Sol:
2.Sol:
3.Sol:
4.Sol:- Sol:
- Sol:
7.Sol:cos sin sin
sin cos sin 0
sin sin cosx x x
x x x
x x xC C C C 1 2 3 ,i.e.,cos 2sin sin sin
cos 2sin cos sin 0
cos 2sin sin cosx x x x
x x x x
x x x x
Now 1 sin sin
cos 2sin 1 cos sin 0
1 sin cosx x
x x x x
x x R R R 1 2 1
R R R 2 3 2i.e., 0 sin cos 0
cos 2sin 0 cos sin sin cos 0
1 sin cosx x
x x x x x x
x x