Mathematics Times – July 2019

(Ben Green) #1
Now

   

   

  

1
1
2

2 1 3 2

1
2
1 1 3 4
1 1
2 2

n
r r

r r r
n
n a

n n
n n n



    

  

 
 


We know

 
   

(^112)
1 1
1
; 2 1 1 ;
2
n n
r r
n n
r r n
 
 


     


 

(^1)   
1
1 3 4
3 2
2
n
r
n n
r


 


  


 
 

  

 
 

  

2

1
1
2

1 1 3 4
1
2 2
1
2
1 1 3 4
1
2 2

n
r
r

n n n n
n

n
n a

n n n n
n



  

   

  


(^)  0 R R 1  2 
Hence, value of
1
1
n
r
r


 is independent of both ‘a’


and ‘n’


  1. Sol: Given


     
     

(^222222)
2 2 2
(^222) 1 1 1
a b c a b c
a b c k a b c
a b c
   
  
   
  
Now, we take L.H.S      
     
2 2 2
2 2 2
2 2 2
a b c
a b c
a b c
  
  
  
  
R R R 2   3 2
     
2 2 2
2 2 2
4 4 4
a b c
a b c
a b c
  
  

  
     
2 2 2
2 2 2
4
a b c
a b c
a b c
  
  

  
R R R R 3   3  1  2 2 



  1. Sol:


16.Sol:

17.Sol:

2 2 2

2 2 2

4

a b c
a b c  
  


2 2 2
4 3
1 1 1

a b c
  a b c

2 2 2

1 1 1

a b c
k a b c given

 k 4 ^2

16.Sol: Given

1 2 3 0 0 1
0 2 3 1 0 0
0 1 1 0 1 0

A

   
   
   
    

Applying C C 1  3
3 2 1 1 0 0
3 2 0 0 0 1
1 1 0 0 1 0

A

   
   
   
    
Again Applying C C 2  3

3 1 2 1 0 0
3 0 2 0 1 0
1 0 1 0 0 1

A

   
   
   
    

pre-multiplying both sides by A^1

1 1

3 1 2 1 0 0
3 0 2 0 1 0
1 0 1 0 0 1

A A A

   
   
   
   

1 1

3 1 2
3 0 2
1 0 1

I A I A 

 
  
 
 

A A I I^1  and identity matrix 

Hence,

1

3 1 2
3 0 2
1 0 1

A

 
 
 
 
17.Sol: Given system of equations can be written as
a x y z^1    ^0

  x b y z (^1)    0
   x y c z 1 0 

Free download pdf