Mathematics Times – July 2019

(Ben Green) #1
i.e.,    ' 

1
g f x'
f x


1
g'(f (x))
f '(x)


1
g'(f (2))
f '(2)

 

1
g'(7)
3

 


  1. Sol: Given  


2
2

sin , 0
sin , 0

x x
h x
x x

 

 

 

2
2

2 cos , 0
'
2 cos , 0

x x x
h x
x x x

 
 
 
We can see from the above function
h' 0 h' 0 h' 0 

Therefore h x'  is continuous at x 0

Now  

2 2 2

2 2 2

2 cos 2 sin , 0
''
2 cos 2 sin , 0

x x x x
h x
x x x x

    

    

Similarly, we can see that h'' 0 h'' 0 . 

Therefore h x''  is not continuous at x 0

So h x'  is not differentiable at x 0

17.Sol: Let P x a x b x c 1   12   1 1


P x a x b x c 2   2 2  2  2
P x a x b x c 3   3 2  3  3
When a a a b b b c c c1 2 3 1 2 3 1 2 3, , , , , , , , are real numbers.

 

2
1 1 1 1 1 1
2
2 2 2 2 2 2
2
3 3 3 3 3 3

2 2
2 2
2 2

a x b x c a x b a
A x a x b x c a x b a
a x b x c a x b a

    
    
 
    

Given      

T
B x A x A x  

 


12 1 1 22 2 2 32 3 3
1 1 2 2 3 2
1 2 3

2 2 2
2 2 2

a x b x c a x b x c a x b x c
B x a x b a x b a x b
a a a

       
    
 
 

2
1 1 1 1 1 1
2
2 2 2 2 2 2
2
3 3 3 3 3 3

2 2
2 2
2 2

a x b x c a x b a
a x b x c a x b a
a x b x c a x b a

    
    
 
    

From the above multiplication, we can see that the
degree of determinant of B x  cannot be less than
4.
18.Sol: Given f x  satisfies all condition of Rolle’ss

theorem in the interval 1,1

i.e.,f^1  f^1 f c' ^0
 2      a b 2 a b
  b 2
now

'^1 0 6^11 2 2 0
2 4 2

f           a  
     
1
2

 a

 2 a b   1

19.Sol: Given f x x      1 ; 1x x 3

Clearly f x  is not continuous at integral values
of x. i.e., x0,1,2,3.
But in statement -2 f x  is continuous at x 3
Statement 2 is false
20.Sol: Given that

  2

1
2

f u
u u


  and

 

1
1

u x
x



Now, it is clear from the given function u x  is
discontinuous at x 1 and
f u  is discontinuous for u 2,1

i.e.,

1 1
2
1 2

x
x

   
 and

1
1 2
1

x
x

  

 The given composite function is discontinuous

for


  1. Sol:


17.Sol:


18.Sol:

19.Sol:

20.Sol:

21.Sol:

(^1) ,1,
2
x and 2.
21.Sol: fog f g x f x     1  
fog f g x f x     1  
    1 1 x 2
   ^1 x^1
Let fog x 
    y 1 x 1
, 0
, 0
x x
y
x x
 
 
 

Free download pdf