Mathematics Times – July 2019

(Ben Green) #1

  1. For

  2. Find the smallest value of


x 0 , the smallest value of

 

4 8 13^2
6 1

x x
x

 
 is:

(a) 1 (b) 2 (c)

25
12

(d)

13
6

2

1 8
1

x
x
x x

 

if

x 1.


  1. Find the smallest value of


y x x x x      (^1)  (^2)  (^3)  4 35.



  1. Find the maximum and minimum values of


2
2

1
y x 1
x

  .


  1. Find the greatest value of x y^2 ^2 if


x xy y x y^2     ^23  3 . x and yand
real.


  1. Let x and y be real numbers satisfying the


equation x x y^2   2 4 5. Compute the
maximum value of x y 2.


  1. The minimum value is mand the maximum


value is n of x xy y^2  ^2 for real x and y
are if x xy y^2   ^23. Find m n.


  1. Find the greatest value^22
    9. Given that^22


x y x  2 if x and
y are real and satisfying:2 6x x y^2   ^20

x y x y   14 6 6, what is the
largest possible value that 3 4x y can
have?
(a) 72 (b) 73 (c) 74 (d) 75


  1. Find the range of


1.Sol: Method 1
We seek the smallest value of

 

y x x   2 3 4 13 for
real x.

































9.

10.

1.Sol: Method 1

 
 

(^242) 2 1 9
4 8 13
6 1 6 1
x x x x
y
x x
    
 
 
 
 
2
4 1 9
6 1
x
x
 


under the condition x 0.
Letting x z  1 , the expression whose
minimum we must determine may be written
as
4 9^2
6
z
y
z

.
Since x 0 and z 1 , we can multiply both
sides by 6z and obtain
4 9 6z zy^2   or 4 6 9 0z zy^2   .
Since z is real,


THE GREATEST AND SMALLEST VALUES
Free download pdf