Pattern Recognition and Machine Learning

(Jeff_L) #1

AppendixA


InChapter9,wediscussedprobabilisticmodelshavingdiscretelatentvariables,such
asthemixtureofGaussians.Wenowexploremodelsinwhichsome,orall,ofthe
latentvariablesarecontinuous. Animportantmotivationforsuchmodelsisthat
manydatasetshavethepropertythatthedatapointsalllieclosetoa manifoldof
muchlowerdimensionalitythanthatoftheoriginaldataspace. Toseewhythis
mightarise,consideranartificialdatasetconstructedbytakingoneoftheoff-line
digits,representedbya 64x 64pixelgrey-levelimage, andembeddingit ina larger
imageofsize 100 x 100bypaddingwithpixelshavingthevaluezero(corresponding
towhite pixels)inwhichthelocationandorientationofthedigitisvariedat random,
asillustratedinFigure12.1.Eachoftheresultingimagesisrepresentedbya pointin

the 100 x 100=10,OOO-dimensionaldataspace.However,acrossa datasetofsuch


images,thereareonlythreedegreesoffreedomofvariability,correspondingtothe


verticalandhorizontaltranslationsandtherotations. Thedatapointswilltherefore
liveona subspaceofthedataspacewhoseintrinsicdimensionalityisthree. Note

559
Free download pdf