Pattern Recognition and Machine Learning

(Jeff_L) #1
12.4.NonlinearLatentVariableModels 591

12.4 Nonlinear Latent Variable Models


Exercise 12.28


Inthischapter,wehavefocussedonthesimplestclassofmodelshavingcontinuous
latentvariables,namelythosebasedonlinear-Gaussiandistributions. Aswellas
havinggreatpracticalimportance,thesemodelsarerelativelyeasytoanalyseand
tofittodataandcanalsobeusedascomponentsinmorecomplexmodels. Here
weconsiderbrieflysomegeneralizationsofthisframeworktomodelsthatareeither
nonlinearornon-Gaussian,orboth.
Infact,theissuesofnonlinearityandnon-Gaussianityarerelatedbecausea
generalprobabilitydensitycanbeobtainedfroma simplefixedreferencedensity,
suchasa Gaussian,bymakinga nonlinearchangeofvariables.Thisideaformsthe
basisofseveralpracticallatentvariablemodelsasweshallseeshortly.

12.4.1 Independent component analysis


Webeginbyconsideringmodelsinwhichtheobservedvariablesarerelated
linearlytothelatentvariables,butforwhichthelatentdistributionis non-Gaussian.
Animportantclassofsuchmodels,knownasindependentcomponentanalysis,or
leA,ariseswhenweconsidera distributionoverthelatentvariablesthatfactorizes,
sothat
M

p(z)= IIp(Zj).


j=l

(12.89)

Tounderstandtheroleofsuchmodels,considera situationinwhichtwopeople
aretalkingatthesametime,andwerecordtheirvoices usingtwomicrophones.

Ifweignoreeffectssuchastimedelayandechoes,thenthesignalsreceivedby


themicrophonesatanypointintimewillbegivenbylinearcombinationsofthe
amplitudesofthetwovoices. Thecoefficientsofthislinearcombinationwillbe
constant,andif wecaninfertheirvaluesfromsampledata,thenwecaninvertthe
mixingprocess(assuming itisnonsingular)andtherebyobtaintwocleansignals
eachofwhichcontainsthevoiceofjustoneperson.Thisis anexampleofa problem
calledblindsourceseparationinwhich'blind'referstothefactthatwearegiven
onlythemixeddata,andneithertheoriginalsourcesnorthemixingcoefficientsare
observed(Cardoso,1998).
Thistypeofproblemis sometimesaddressedusingthefollowingapproach
(MacKay,2003)inwhichweignorethetemporalnatureofthesignalsand treatthe
successivesamplesasi.i.d.Weconsidera generativemodelinwhichtherearetwo
latentvariablescorrespondingtotheunobservedspeechsignalamplitudes,andthere
aretwoobservedvariablesgivenbythesignalvaluesat themicrophones.Thelatent
variableshavea jointdistributionthatfactorizesasabove,andtheobservedvariables
aregivenbya linearcombinationofthelatentvariables.Thereis noneedtoinclude
a noisedistributionbecausethenumberoflatentvariablesequalsthenumberofob-
servedvariables,andthereforethemarginaldistributionoftheobservedvariables
willnotingeneralbesingular,sotheobservedvariablesaresimplydeterministic
linearcombinationsofthelatentvariables. Givena datasetofobservations,the
Free download pdf