594 12.CONTINUOUSLATENTVARIABLES
Figure12.19 Addition of extra hidden lay-
ersofnoolinearunitsgivesan
auloassocialivenetworkwhich
canperforma noolineardimen-
siooalityreduction.
inputs
x,
F,
F,
outputs
x,
Thesituationis different,however.ifadditionalhiddenlayersarepcrmillcdin
thenetwork.Considerthefour-layerautoassociativcnetworkshowninFigure12.19.
Againtheoutputunitsarelinear,andtheMunitsinthesecondhiddenlayercanalso
belinear.however,thefirstandthirdhiddenlayershavesigmoidalnonlinearactiva-
tionfunctions. Thenetworkis againtrainedbyminimizationoftheerrorfunction
(12.91). Wecanviewthisnetworkas twosuccessivefunctionalmappingsF]and
F 2 ,asindicatedinFigure12.19. ThefirstmappingF] projectstheoriginalD-
dimensionaldataontoanAI-dimensionalsubspaceSdefinedbytheactivationsof
theunitsinthesecondhiddenlayer.Becauseofthepresenceofthefirsthiddenlayer
ofnonlinearunits.thismappingis verygeneral.andinparticularisnotrestrictedto
beinglinear.Similarly.thesecondhalfofthenetworkdefinesanarbitraryfunctional
mappingfromtheM-dimensionalspacebackintotheoriginalD-dimensionalinput
space.Thishasa simplegeometricalinterpretation.asindicatedforthecaseD= 3
andM = 2 inFigure12.20.
Sucha networkeffectivelyperfonnsa nonlinearprincipalcomponentanalysis.
X3
F, "
x,
"
Figure12.20 Geometricalinterpretationofthemappingsperformedbythenetworkin Figure12.1g forthecase
of 0 = 3 inputsandAI= 2 unitsinthemiddlehiddenlayer. ThefunctionF,mapsfromanM-dimensional
spaceSintoa D-dimensiooalspaceandthereforedefinesthewayin whichthespaceSis embeddedwithinthe
originalx-space.SincethemappingF,canber"I()(llinear,theembedding 01 Scanbenonplanar,asindicated
inthefigure.ThemappingF.thendefinesa projectiorlofpointsintheoriginalD-dimensionalspaceintothe
M-dimensionalsubspaceS.